Skip to main content

Root Cause and Failure Analysis

  • Chapter
  • First Online:
Book cover MEMS Reliability

Part of the book series: MEMS Reference Shelf ((MEMSRS))

Abstract

This chapter will cover strategies for identifying root cause and corrective action of reliability field failures. The MEMS reliability program must include strategies for identifying potential failure modes, failure mechanisms, risk areas in design and process, and containment strategies. Containment of the failure is crucial to achieving a low field failure rate while the root cause is determined and the proper corrective action is developed, checked for effectiveness, and then finally implemented into production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Document SAE J 1739: Potential Failure Mode and Effects Analysis in Design (Design FMEA) and Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Process FMEA) Reference Manual, SAE, 400 Commonwealth Drive, Warrendale, PA 15096–0001.

    Google Scholar 

  2. Bhattacharya, S., Hartzell, A. (2007) J. Micro/Nanolith, MEMS MOEMS, Jul–Sep 6(3), 033010-1–033010-12.

    Google Scholar 

  3. Stoney, G.G. (1909) The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A. 82(553), 172–175.

    Article  Google Scholar 

  4. LaVern, A.S. (2002) PhD Thesis, Air Force Institute of Technology, April 2002 “Characterization of Residual Stress in Microelectromechanical Systems (MEMS) Devices using Raman Spectroscopy”.

    Google Scholar 

  5. Ken, G., et al. (2004) Creep of thin film Au on bimaterial Au/Si microcantilevers. Acta Materialia 52, 2133–2146.

    Article  Google Scholar 

  6. Arthur Lin, Y. (1999) Parametric Wafer Map Visualization. IEEE Comput. Graphics Appl. 19(4), 14–17, (Jul/Aug).

    Article  Google Scholar 

  7. Arman G., et al. (2000) Mechanical Reliability of Surface Micromachined Self-Assembling Two-Axis MEMS Tilting Mirrors. Prov. SPIE. 4180, MEMS Reliability for Critical Applications.

    Google Scholar 

  8. Wyko NT9100 Optical Profiling System, 2007 Veeco Instruments Inc. DS544, Rev A0.

    Google Scholar 

  9. Koev, S.T., Ghodssi, R. (2008) Advanced interferometric profile measurements through refractive media. Rev. Sci. Instrum. 79, 093702.

    Article  Google Scholar 

  10. Goldstein J, Newbury DE, Joy DC, Lyman CE (2003) Scanning Electron Microscopy and X-ray Microanalysis. New York: Springer.

    Book  Google Scholar 

  11. Kahn, H., Ballarini, R., Heuer, A.H. (2001) On the Fracture Toughness of Polysilicon MEMS Structures. Mat. Res. Soc. Symp. Proc. 657 (© 2001 Materials Research Society). 13–18.

    Google Scholar 

  12. Miller, D.C., et al. (2008) Connections between morphological and mechanical evolution during galvanic corrosion of micromachined polysilicon and monocyrstalline silicon. J. Appl. Phys. 103, 123518.

    Article  Google Scholar 

  13. Guy F. Dirras, George Coles, Anthony J Wagner, Stephen Carlo, Caroline Newman, Kevin J. Hemker, William N. Sharpe, “On the Role of the Underlying Microstructure on the Mechanical Properties of Microelectromechanical Systems (MEMS) Materials” Materials Science of Microelectromechanical Systems (MEMS) Devices III, MRS Proceedings Volume 657.

    Google Scholar 

  14. Nunan, K., Ready, G., Sledziewski, J. (2001) LPCVD and PECVD Operations Designed for iMEMS Sensor Devices. Vacuum Coating Technol. 2(1), 26–37.

    Google Scholar 

  15. Gnauck, P., Hoffrogge, P. (2003) A new SEM/FIB Crossbeam Inspection Tool for high Resolution Mateirals and Device Characterization. Proc of SPIE. 4980, Reliability, Testing, and Characterization of MEMS/MOEMS II.

    Google Scholar 

  16. Walraven, J., et al. (2000) Failure analysis of tungsten coated polysilicon micromachined mircroengines. Proc. of SPIE. 4180, MEMS Reliability for Critical Applications.

    Google Scholar 

  17. Bharat, B., Huiwen, L. (2004) Micro/nanoscale tribological and mechanical characterization for MEMS/NEMS. Proc. of SPIE. 5392, Testing, Reliability and Application of Micro- and Nano-Material Systems II.

    Google Scholar 

  18. Loretto, M.H. (1984) Electron Beam Analysis of Materials. New York: Springer Science and Business Media.

    Book  Google Scholar 

  19. Miller, D., et al. (2007) Thermo-mechanical evolution of multilayer thin films: Part II. Microstructure evolution in Au/Cr/Si microcantilevers. Thin Solid Films 515, 3224–3240.

    Article  Google Scholar 

  20. Thornell, G., et al. (1999) Residual stress in sputtered gold films on quartz measured by the cantilevel beam deflection technique. IEEE Trans Ultrasonics, Ferroelectrics, Frequency Control, 46(4), July.

    Google Scholar 

  21. Alie, S., Hartzell, A., Karpman, M., Martin, J.R., Nunan, K. (2003) Optical mirror coatings for high-temperature diffusion barriers and mirror shaping United States Patent 6508561, Analog Devices.

    Google Scholar 

  22. Knieling, T., Lang, W., Benecke, W. (2007) Gas phase hydrophobisation of MEMS silicon structures with self-assembling monolayers for avoiding in-use sticking. Sensors Actuators B 126, 13–17.

    Article  Google Scholar 

  23. Mowat, I., et al. (2007) Analytical methods for nanotechnology. NSTI Nanotech 2007 Proceedings, Santa Clara, May 20–24.

    Google Scholar 

  24. Tepolt, G.B. (2010) Hermetic vacuum sealing of MEMS devices containing organic components. SPIE 2010 Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices IX, Conference 7592.

    Google Scholar 

  25. Mastrangelo, C.H. (1999) Supression of Stiction in MEMS. MRS.

    Google Scholar 

  26. Mastrangelo, C.H., Hsu, C.H. (1992) A simple experimental technique for the measurement of work of adhesion of microstructures. Solid-State Sensor and Actuator Workshop, 1992, 5th Technical Digest, IEEE; 22–25 June.

    Google Scholar 

  27. Maboudian, R., Carraro, C. (2004) Surface chemistry and tribology of MEMS. Ann. Rev. Phys. Chem. 55, 35–54.

    Article  Google Scholar 

  28. Wibbeler, J. et al. (1988) Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sensor Actuators A 71, 74–80.

    Article  Google Scholar 

  29. Reiter, G. et al. (1999) Destabilizing effect of long-range forces in thin liquid films on wettable surfaces. Europhys. Lett. 46(4), 512–518.

    Article  MathSciNet  Google Scholar 

  30. Danilov, V. et al. (2009) Plasma treatment of polydimethylsiloxane thin films studied by infrared reflection absorption spectroscopy. 29th ICPIG, July 12–17, Cancun, Mexico.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allyson L. Hartzell .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hartzell, A.L., da Silva, M.G., Shea, H.R. (2011). Root Cause and Failure Analysis. In: MEMS Reliability. MEMS Reference Shelf. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6018-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6018-4_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6017-7

  • Online ISBN: 978-1-4419-6018-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics