Skip to main content

In-Use Failures

  • Chapter
  • First Online:
MEMS Reliability

Part of the book series: MEMS Reference Shelf ((MEMSRS))

Abstract

This chapter addresses in-use failures of MEMS, with an emphasis on the physics of failure. Chapter 3 dealt with eliminating failures from a design and manufacturing perspective. In this chapter we focus on how a well-designed, fabricated and packaged device can fail in use. There is a tight link between the design, manufacturing and in-use failures. Understanding the physics of failure (e.g., creep, fatigue) and the properties of materials used and the link to the process flow (e.g., yield strength of poly-silicon following HF release) lead to improved design rules to ensure the device will operate reliably in the expected operating environment. A concurrent design of the package is often required, but is not addressed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This procedure was developed by Subramanian Sundaram at the EPFL.

References

  1. Arney, S. (2001) Designing for MEMS reliability. MRS Bull 26(4), 296.

    Article  MathSciNet  Google Scholar 

  2. D. M. Tanner et al. (2000) MEMS reliability: infrastructure, test structures, experiments, and failure modes. Sandia Report SAND2000-0091, http://mems.sandia.gov/tech-info/doc/000091o.pdf

  3. Gad-el-Hak, M. (ed) (2002) The MEMS Handbook. Boca Raton, FL: CRC Press.

    MATH  Google Scholar 

  4. http://www.memsnet.org/material/

  5. Boyce, B.L., Grazier, J.M., Buchheit, T.E., Shaw, M.J. (2007) Strength distributions in polycrystalline silicon MEMS. J. Microelectromech. Syst. 16(2), 179.

    Article  Google Scholar 

  6. Chen, K.-S., Ayon, A., Spearing, S.M. (2000) Controlling and testing the fracture strength of silicon on the mesoscale. J. Am. Ceramic Soc. 83(6), 1476–1484.

    Article  Google Scholar 

  7. Sharpe, W.N., Bagdahn, J., Jackson, K., Coles, G. (2003) Tensile testing of MEMS materials—recent progress. J. Mater. Sci. 38, 4075–4079.

    Article  Google Scholar 

  8. Bagdahn, J., Sharpe, W.N., Jadaan, O. (2003) Fracture strength of polysilicon at stress concentrations. J. Microelectromech. Syst. 12(3), 302–312.

    Article  Google Scholar 

  9. Tanner, D.M., Walraven, J.A., Helgesen, K., Irwin, L.W., Brown, F., Smith, N.F., Masters, N. (2000) MEMS reliability in shock environments. Proc. 38th IEEE Int. Reliability Phys. Symp.

    Google Scholar 

  10. Rasmussen, J., Bonivert, W., Krafcik, J. (2003) High aspect ratio metal MEMS (LIGA) technologies for rugged, low-cost firetrain and control components. NDIA 47th Annual Fuze Conference, April 10. Available at: http://www.dtic.mil/ndia/2003fuze/rasmussen.pdf

  11. Srikar, V.T., Senturia, S.D. (2002) The reliability of microelectromechanical systems (MEMS) in shock environments. J. Microelectromech. Syst. 11(3), 206.

    Article  Google Scholar 

  12. Sundaram, S. private communication. subramanian.s88@gmail.com

    Google Scholar 

  13. Greek, S., Ericson, F., Johansson, S., Fürtsch, M., Rump, A. (1999) Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures. J. Micromech. Microeng. 9, 245–251.

    Article  Google Scholar 

  14. Wagner, U., Muller-Fiedler, R., Bagdahn, J., Michel, B., Paul, O. (2003) Mechanical reliability of epipoly MEMS structures under shock load. TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, vol. 1.

    Google Scholar 

  15. Sang, W.Y., Yazdi, N., Perkins, N.C., Najafi, K. (2005) Novel integrated shock protection for MEMS. Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers. TRANSDUCERS ’05. The 13th International Conference on, vol.1.

    Google Scholar 

  16. Liu, H., Bhushan, B. (2004) Nanotribological characterization of digital micromirror devices using an atomic force microscope. Ultramicroscopy 100, 391–412.

    Article  Google Scholar 

  17. Hartzell, A., Woodilla, D. (1999) Reliability methodology for prediction of micromachined accelerometer stiction. 37th International Reliability Physics Symposium (IRPS), San Diego, California, 202

    Google Scholar 

  18. Swiler, T.P., Krishnamoorthy, U., Clews, P.J., Baker, M.S., Tanner, D.M. (2008) Challenges of designing and processing extreme low-G microelectromechanical system (MEMS) accelerometers, Proc. SPIE 6884, 68840O, DOI: 10.1117/12.77.

    Google Scholar 

  19. http://www.colibrys.com/files/pdf/products/DS%20HS8000%20D%2030S.HS8X%20F.03.09.pdf

  20. Stauffer, J.-M., Dutoit, B., Arbab, B. (2006) Standard MEMS sensor technologies for harsh environment. IET Digest 2006, (11367), 91–96, DOI: 10.1049/ic:20060450.

    Google Scholar 

  21. Stauffer, J.-M. (2006) Standard MEMS capacitive accelerometers for harsh environment. Paper CANEUS2006-11070, Proceedings of CANEUS2006, August 27–September 1, Toulouse, France

    Google Scholar 

  22. Habibi, S., Cooper,S.J., Stauffer, J.-M., Dutoit, B. (2008) Gun hard inertial measurement unit based on MEMS capacitive accelerometer and rate sensor. IEEE/ION Position Location and Navigation System (PLANS) Conference.

    Google Scholar 

  23. Ghose, K., Shea, H.R. (2009) Fabrication and testing of a MEMS based Earth sensor. Transducers 2009, Denver, CO, USA, June 21–25, paper M3P.077.

    Google Scholar 

  24. Suhir, E. (1997) Is the maximum acceleration an adequate criterion of the dynamic strength of a structural element in an electronic product? IEEE Trans. Components Packaging Manuf. Technol.—Part A, 20(4), December 1997.

    Google Scholar 

  25. Harris C.M. (ed) (2002) Harris’ Shock and Vibration Handbook, 5th edn. New York: McGraw-Hill.

    Google Scholar 

  26. Young, W.C. Roark’s Formulas for Stress And Strain, 6th edn. New York: McGraw Hill.

    Google Scholar 

  27. Muhlstein, C. L., Brown, S. B., Ritchie, R. O. (2001) High-cycle fatigue of single-crystal silicon thin films. J. Microelectromech. Syst. 10, 593.

    Article  Google Scholar 

  28. Gasparyan, A., Shea, H., Arney, S., Aksyuk, V., Simon, M.E., Pardo, F., Chan, H.B., Kim, J., Gates, J., Kraus, J.S., Goyal, S., Carr, D., Kleiman, R. Drift-Free, 1000G Mechanical Shock Tolerant Single-Crystal Silicon Two-Axis MEMS Tilting Mirrors in a 1000×1000-Port Optical Crossconnect, Post deadline paper PD36-1, Optical Fiber Communication Conference and Exhibit 2003, OFC 2003, March 2003 Atlanta, GA. DOI: 10.1109/OFC.2003.1248617

    Google Scholar 

  29. Kahn, H., Deeb, C., Chasiotis, I., Heuer, A.H. (2005) Anodic oxidation during MEMS processing of silicon and polysilicon: native oxides can be thicker than you think. J. Microelectromech. Syst. 14, 914–923.

    Article  Google Scholar 

  30. Miller, D., Gall, K., Stoldt, C. (2005) Galvanic corrosion of miniaturized polysilicon structures: morphological, electrical, and mechanical effects. Electrochem. Solid-State Lett. 8, G223–G226.

    Article  Google Scholar 

  31. Modlinski, R., Ratchev, P., Witvrouw, A., Puers, R., DeWolf, I. (2005) Creep-resistant aluminum alloys for use in MEMS. J. Micromech. Microeng. 15, S165–S170, doi:10.1088/0960-1317/15/7/023

    Article  Google Scholar 

  32. Douglass, M.R. (1998) Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). 36th Annual International Reliability Physics Symposium, Reno, Nevada.

    Google Scholar 

  33. Modlinski, R., Witvrouw, A., Ratchev, P., Puers, R., den Toonder, J.M.J., De Wolf, I. (2004) Creep characterization of Al alloy thin films for use in MEMS applications. Microelectron. Eng. 76, 272–278.

    Article  Google Scholar 

  34. Ritchie, R.O., Dauskardt, R.H. (1991) J. Ceram. Soc. Jpn. 99, 1047–1062.

    Article  Google Scholar 

  35. Ritchie, R.O. (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int. J. Fracture 100, 55–83.

    Article  Google Scholar 

  36. Van Arsdell, W.W., Brown, S.B. (1999) Subcritical crack growth in silicon MEMS. J. Microelectromech. Syst. 8, 319.

    Article  Google Scholar 

  37. Muhlstein, C.L., Stach, E.A., Ritchie, R.O. (2002) Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical systems. Appl. Phys. Lett. 80, 1532.

    Article  Google Scholar 

  38. Muhlstein, C.L., Stach, E.A., Ritchie, R.O. (2002) A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater. 50, 3579.

    Article  Google Scholar 

  39. Kahn, H., Chen, L., Ballerini, R., Heuer, A.H. (2006) Acta Mater. 54, 667

    Article  Google Scholar 

  40. Kahn, H., Ballerini, R., Bellante, J.J., Heuer, A.H. (2002) Fatigue failure in polysilicon not due to simple stress corrosion cracking. Science 298, 1215.

    Google Scholar 

  41. Alsem, D.H. et al. (2007) Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: effects of environment and surface oxide thickness. J. Appl. Phys. 101, 013515.

    Article  Google Scholar 

  42. Douglass, M.R. (2003) DMD reliability: a MEMS success story. In R. Ramesham, D. Tanner (eds) Proceedings of the Reliability, Testing, and Characterization of MEMS/ MOMES II, SPIE, Bellingham, WA, Vol. 4980, 1–11.

    Chapter  Google Scholar 

  43. Yang, Y., Allameh, S., Lou, J., Imasogie, B., Boyce, B.L., Soboyejo, W.O. (2007) Fatigue of LIGA Ni micro-electro-mechanical system thin films. Metallurgical Mater. Trans. A 38A, 2340.

    Google Scholar 

  44. Cho, H.S., Hemker, K.J., Lian, K., Goettert, J., Dirras, G. (2003) Sens. Actuat. A: Phys. 103(1–2), 59–63.

    Article  Google Scholar 

  45. Son, D. et al. (2005) Tensile properties and fatigue crack growth in LIGA nickel MEMS structures. Mater. Sci. Eng. A 406, 274–278.

    Article  Google Scholar 

  46. Allameh, M., Lou, J., Kavishe, F., Buchheit, T.E., Soboyejo, W.O. (2004) Mater. Sci. Eng. A 371, 256–66.

    Article  Google Scholar 

  47. Reid, J.R., Webster, R.T. (2002) Measurements of charging in capacitive microelectromechanical switches. Electron. Lett. 38(24), 1544–1545.

    Article  Google Scholar 

  48. De Groot, W.A., Webster, J.R., Felnhofer, D., Gusev, E.P. (2009) Review of device and reliability physics of dielectrics in electrostatically driven MEMS devices. IEEE Trans. Dev. Mater. Reliability 9(2), art. no. 4813209, 190–202.

    Google Scholar 

  49. Shea, H.R., Gasparyan, A., Chan, H.B., Arney, S., Frahm, R.E., López, D., Jin, S., McConnell, R.P. (2004) Effects of electrical leakage currents on MEMS reliability and performance. IEEE Trans Dev. Mater. Reliability 4(2), 198–207.

    Google Scholar 

  50. Crank, J. (1997) The mathematics of diffusion, 2nd edn. Oxford: Clarendon Press, 47–51.

    Google Scholar 

  51. Lewis, T.J. (1978) In D.T. Clark and W.J. Feast (eds) The Movement of Electrical Charge Along Polymer Surfaces in Polymer Surfaces. New York: John Wiley & Sons.

    Google Scholar 

  52. Ehmke, J., Goldsmith, C., Yao, Z., Eshelman, S. (2002) Method and apparatus for switching high frequency signals. Raytheon Co., United States patent 6,391,675; May 21.

    Google Scholar 

  53. Ohring, M. (1998) Reliability and Failure of Electronic Materials and Devices. New York: Academic Press, 310–325 and references therein.

    Google Scholar 

  54. Rebeiz, G.M., Muldavin, J.B. (2001) RF MEMS switches and switch circuits. in IEEE Microwave Magazine 2(4), 59–71.

    Article  Google Scholar 

  55. Rebeiz, G.M. (2003) RF MEMS: Theory, Design and Technology. New York: John Wiley and Sons.

    Book  Google Scholar 

  56. Goldsmith, C.L., Forehand, D., Scarbrough, D., Peng, Z., Palego, C., Hwang, J.C.M., Clevenger, J. (2008) Understanding and improving longevity in RF MEMS capacitive switches. Proc. Int. Soc. Opt. Eng. 6884(03), Feb 2008.

    Google Scholar 

  57. Peng, Z., Palego, C., Hwang, J.C.M., Moody, C., Malczewski, A., Pillans, B., Forehand, D., Goldsmith, C. (2009) Effect of packaging on dielectric charging in RF MEMS capacitive switches. IEEE Int. Microwave Symp. Dig. 1637–1640, June 2009.

    Google Scholar 

  58. Wibbeler, J., Pfeifer, G., Hietschold, M. (1998) Sens. Actuators A 71, 74–80.

    Article  Google Scholar 

  59. Van Spengen, W.M., Puers, R., Mertens, R., De Wolf, I. (2004) A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches. J. Micromechan. Microeng. 14(4), 514–521.

    Article  Google Scholar 

  60. Goldsmith, C.L., Ehmke, J., Malczewski, A., Pillans, B., Eshelman, S., Yao, Z., Brank. J., Eberly, M. (2001) Lifetime characterization of capacitive RF MEMS switches. IEEE MTT-S Int. Microwave Symp. Digest 3, 227–230.

    Google Scholar 

  61. Peng, Z., Palego, C., Hwang, J.C.M., Forehand, D., Goldsmith, C., Moody, C., Malczewski, A., Pillans, B., Daigler, R., Papapolymerou, J. (2009) Impact of humidity on dielectric charging in RF MEMS capacitive switches. IEEE Microwave Wireless Comp. Lett. vol. 1.

    Google Scholar 

  62. Schönhuber, M.J. (1969) Breakdown of gases below paschen minimum: basic design data of high-voltage equipment. IEEE Trans. Power Apparatus Syst. vol. PAS-88, 100, Feb 1969

    Google Scholar 

  63. Dhariwal, R.S., Torres, J.M., Desmulliez, M.P.Y. (2000) Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pressure. IEE Proc. Sci. Meas. Technol. 147(5), 261–265.

    Article  Google Scholar 

  64. Torres, J.-M., Dhariwal, R.S. (1999) Electric field breakdown at micrometre separations. Nanotechnology 10, 102–107.

    Article  Google Scholar 

  65. Slade, P.G., Taylor, E.D. (2002) Electrical breakdown in atmospheric air between closely spaced (0.2 μm–40 μm) electrical contacts. IEEE Trans. Comp. Packaging Technol. 25 (3), 390–396.

    Article  Google Scholar 

  66. Wallash, A., Levit, L. (2003) Electrical breakdown and ESD phenomena for devices with nanometer-to-micron gaps. Proc. of SPIE 4980, 87–96.

    Article  Google Scholar 

  67. Chen, C.-H., Yeh, J.A., Wang, P.-J. (2006) Electrical breakdown phenomena for devices with micron separations. J. Micromech. Microeng. 16, 1366–1373.

    Article  Google Scholar 

  68. Strong, F.W., Skinner, J.L., Tien, N.C. (2008) Electrical discharge across micrometer-scale gaps for planar MEMS structures in air at atmospheric pressure. J. Micromech. Microeng. 18, 075025.

    Article  Google Scholar 

  69. Paschen, F. (1889) Über die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Annalen der Physik 273(5), 69–96.

    Article  Google Scholar 

  70. Townsend, J. (1915) Electricity in Gases. New York: Oxford University Press.

    Google Scholar 

  71. Braithwaite, N.St.J. (2000) Introduction to gas discharges. Plasma Sources Sci. Technol. 9, 517–527.

    Google Scholar 

  72. Osmokrovic, P., Vujisic, M., Stankovic, K., Vasic, A., Loncar, B. (2007) Mechanism of electrical breakdown of gases for pressures from 10-9 to 1 bar and inter-electrode gaps from 0.1 to 0.5 mm. Plasma Sources Sci. Technol. 16, 643–655.

    Google Scholar 

  73. Torres, J.-M., Dhariwal, R.S. (1999) Electric field breakdown at micrometre separations in air and vacuum. Microsyst. Technol. 6(1), November, 6–10, DOI 10.1007/s005420050166.

    Google Scholar 

  74. Carazzetti, P., Shea, H.R. (2009) Electrical breakdown at low pressure for planar MEMS devices with 10 to 500 micrometer gaps. J. Micro/Nanolithography, MEMS, and MOEMS 8(3), 031305.

    Google Scholar 

  75. Habermehl, S., Apodaca, R.T., Kaplar, R.J. (2009) On dielectric breakdown in silicon-rich silicon nitride thin films. Appl. Phys. Lett. 94, 012905.

    Article  Google Scholar 

  76. Amerasekera, A., Duvvury, C. (2002) ESD in Silicon Integrated Circuits, 2nd edn. New York: John Wiley and Sons.

    Book  Google Scholar 

  77. Walraven, J.A., Soden, J.M., Tanner, D.M., Tangyunyong, P., Cole Jr., E.I., Anderson, R.E., Irwin, L.W. (2000) Electrostatic discharge/electrical overstress susceptibility in MEMS: A new failure mode. Proceedings.

    Google Scholar 

  78. Ruan, J., Nolhier, N., Papaioannou, G.J., Trémouilles, D., Puyal, V., Villeneuve, C., Idda, T., Coccetti, F., Plana, R. Accelerated lifetime test of RF-MEMS switches under ESD stress. Microelectron. Reliability 49(9–11), 125.

    Google Scholar 

  79. Tazzoli, A., Peretti, V., Meneghesso, G. (2007) Electrostatic discharge and cycling effects on ohmic and capacitive RF-MEMS switches. IEEE Trans. Dev. Mater. Reliability 7(3), 429–436.

    Article  Google Scholar 

  80. Sangameswaran, S., Coster, J.D., Linten, D., Scholz, M., Thijs, S., Haspeslagh, L., Witvrouw, A., Hoof, C.V., Groeseneken, G., Wolf, I.D. (2008) ESD reliability issues in microelectromechanical systems (MEMS): A case study on micromirrors. Electric.

    Google Scholar 

  81. Krumbein, S.J. (1987) Metallic electromigration phenomena 33rd meeting of the IEEE Holm Conference on Electrical Contacts, Published by AMP Inc, 1989. http://www.tycoelectronics.com/documentation/whitepapers/pdf/p313-89.pdf

  82. Black, J.R. (1969) IEEE Trans. Electron Dev. ED-16, 338.

    Google Scholar 

  83. Courbat, J., Briand, D., de Rooij, N.F. (2008) Sens. Actuators A 142, 284–291.

    Article  Google Scholar 

  84. Hon, M., DelRio, F.W., White, J.T., Kendig, M., Carraro, C., Maboudian, R. (2008) Cathodic corrosion of polycrystalline silicon MEMS. Sens. Actuators A: Phys. 145–146, July–August 2008, 323–329, DOI: 10.1016/j.sna.20

    Google Scholar 

  85. Stark, B. (1999) MEMS reliability assurance guidelines for space applications. JPL Publication 99-1. http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/18901/1/99-9001.pdf

  86. Shea, H. (2006) Reliability of MEMS for space applications. Proc. of SPIE Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V, Vol. 6111, 61110A. DOI:10.1117/12.651008.

    Google Scholar 

  87. “Handbook of radiation effects”, by A. Holmes-Siedle and L. Adams, Oxford University press, 2nd edition, 2002

    Google Scholar 

  88. European Cooperation for Space Standardization, document ESCC Basic Specification 22900 for Total Dose Steady-State Irradiation Test Method, available at: http://https://escies.org/ReadArticle?docId=229

  89. European Cooperation for Space Standardization, document ESCC Basic Specification 25100 for Single Event Effects Test Method and Guidelines. Available at: http://https://escies.org/ReadArticle?docId=229

  90. SPENVIS, the Space Environment Information System, http://www.spenvis.oma.be/

  91. Shea, H. (2009) Radiation sensitivity of microelectromechanical system devices. J. Micro/Nanolith. MEMS MOEMS 8(3), 031303, Jul–Sep 2009.

    Google Scholar 

  92. European Space Agency Procedures Standards and Specifications, document ESA PSS-01-609 (May 1993) Radiation Design Handbook, available at: http://https://escies.org/ReadArticle?docId=263

  93. European Cooperation for Space Standardization, document ECSS-E-ST-10-04C Space environment, available at: http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/showFile/100700/d20081115082809/No/ECSS-E-ST-10-04C (15 November2008).pdf

  94. Beasley, M. et al. (2004) MEMS thermal switch for spacecraft thermal control. Proc. SPIE 5344(98), DOI:10.1117/12.530906.

    Google Scholar 

  95. Pierron, O.N., Macdonald, D.D., Muhlstein, C.L. (2005) Galvanic effects in Si-based microelectromechanical systems: thick oxide formation and its implications for fatigue reliability. Appl. Phys. Lett. 86, 211919.

    Article  Google Scholar 

  96. Miller, D.C., Hughes, W.L., Wang, Z.L., Gall, K., Stoldt, C.R. (2006) Galvanic corrosion: a microsystems device integrity and reliability concern. Proc. SPIE 6111, 611105, DOI:10.1117/12.644932.

    Google Scholar 

  97. Coumar, O., Poirot, P., Gaillard, R., Miller, F., Buard, N., Marchand, L. Total dose effects and SEE screening on MEMS COTS accelerometers. Radiation Effects Data Workshop, 2004 IEEE 22 July 2004, 125–129.

    Google Scholar 

  98. Lee, C.I., Johnston, A.H., Tang, W.C., Barnes, C.E. (1996) Total dose effects on micromechanical systems (MEMS): accelerometers. IEEE Trans. Nucl. Sci. 43, 3127–3132.

    Article  Google Scholar 

  99. Knudson, A.R., Buchner, S., McDonald, P., Stapor, W.J., Campbell, A.B., Grabowski, K.S., Knies, D.L. (1996) The effects of radiation on MEMS accelerometers. IEEE Trans. Nucl. Sci. 43, 3122–3126.

    Article  Google Scholar 

  100. Edmonds, L.D., Swift, G.M., Lee, C.I. (1998) Radiation response of a MEMS accelerometers: an electrostatic force. IEEE Trans. Nucl. Sci. 45, 2779–2788.

    Article  Google Scholar 

  101. Schanwald, L.P. et al. (1998) Radiation effects on surface micromachined comb drives and microengines. IEEE Trans. Nucl. Sci. 45(6), 2789–2798.

    Article  Google Scholar 

  102. Holbert, K.E., Nessel, J.A., McCready, S.S., Heger, A.S., Harlow, T.H. (2003) Response of piezoresistive MEMS accelerometers and pressure transducers to high gamma dose. Nuclear Sci. IEEE Trans. 50(6), Part 1, Dec. 2003, 18.

    Google Scholar 

  103. McCready, S.S. et al. (2002) Piezoresistive micromechanical transducer operation in a pulsed neutron and gamma ray environment. IEEE Radiation Effects Data Workshop, 181–186.

    Google Scholar 

  104. Marinaro, D. et al. (2008) Proton radiation effects on MEMS silicon strain gauges. IEEE Trans. Nuclear Sci. 55(3), 1714.

    Article  Google Scholar 

  105. Quadri, G., Nicot, J.M., Guibaud, G., Gilard, O. (2005) Optomechanical microswitch behavior in a space radiation environment. IEEE Trans. Nuclear Sci. 52(5), 1795.

    Article  Google Scholar 

  106. Miyahira, T.F. et al. (2003 ) Total dose degradation of MEMS optical mirrors. IEEE Trans. Nuclear Sci. 50(6), Part 1, Dec. 2003, 1860–1866.

    Google Scholar 

  107. McClure, S., Edmonds, L., Mihailovich, R., Johnston, A., Alonzo, P., DeNatale, J., Lehman, J., Yui, C. (2002) Radiation effects in microelectromechanical systems (MEMS): RF relays. IEEE Trans. Nucl. Sci. 49, 3197–3202, Dec. 2002.

    Article  Google Scholar 

  108. Tazzoli, A., Cellere, G., Peretti, V., Paccagnella, A., Meneghesso, G. (2009) Radiation sensitivity of OHMIC RF-MEMS switches for spatial applications. Proc. IEEE Int. Conference Micro Electro Mechanical Syst. (MEMS).

    Google Scholar 

  109. Buchner, S. et al. (2007) Response of a MEMS microshutter operating at 60 K to ionizing radiation. IEEE Trans. Nuclear Sci. 54(6), 2463.

    Article  Google Scholar 

  110. Caffey, J.R., Kladitis, P.E. (2004) The effects of ionizing radiation on microelectromechanical systems (MEMS) actuators: electrostatic, electrothermal, and bimorph. Micro Electro Mech. Syst. 17th IEEE Int. Conference MEMS.

    Google Scholar 

  111. Son, C., Ziaie, B. (2008) An implantable wireless microdosimeter for radiation oncology. Proc. IEEE Conference Micro Electro Mech. Syst. (MEMS 2008), 256.

    Google Scholar 

  112. Schwartz, R.N. et al. (2000) Gamma-ray radiation effects on RF MEMS switches. Proc. 2000 IEEE Microelectron. Reliability Qualification Workshop, Oct. 2000, IV.6.

    Google Scholar 

  113. Zhu, S.-Y. et al. (2001) Total dose radiation effects of pressure sensors fabricated on Unibond-SOI materials. Nucl. Sci. Tech. 12, 209–214.

    Google Scholar 

  114. Lamhamdi, M. et al. (2006) Characterization of dielectric-charging effects in PECVD nitrides for use in RF MEMS capacitive switches. Proc of 7th International conference on RF MEMS and RF microsystems (MEMSWAVE) 2006.

    Google Scholar 

  115. Comizzoli, R.B. (1991) Surface Conductance on Insulators in the Presence of Water Vapor, in Materials Developments in Microelectronic Packaging: Performance and Reliability. Proceedings of the Fourth Electronic Materials and Processing Congress, 311

    Google Scholar 

  116. Lewerenz, H.J. (1992) Anodic oxides on silicon. Electrochimica Acta 37, 847–864.

    Article  Google Scholar 

  117. Perregaux, G., Gonseth, S., Debergh, P., Thiebaud, J.-P., Vuilliomenet, H. “Arrays of addressable high-speed optical microshutters” MEMS 2001. The 14th IEEE International Conference on MEMS, Jan 2001, 232–235.

    Google Scholar 

  118. Plass, R.A., Walraven, J.A., Tanner, D.M., Sexton, F.W. Anodic oxidation-induced delamination of the SUMMiT poly 0 to Silicon Nitride Interface. In R. Ramesham, D.M. Tanner (eds) Reliability, Testing, and Characterization of MEMS/MOEMS II; Proc. SPIE V.

    Google Scholar 

  119. Shea, H.R., White, C., Gasparyan, A., Comizzoli, R.B., Abusch-Magder, D., Arney, S. (2000) Anodic oxidation and reliability of poly-Si MEMS electrodes at high voltages and in high relative humidity, in MEMS Reliability for Critical Applications, R.A. Lawton Proc. SPIE, 4180, 117–122. DOI: 10.1117/12.395700

    Google Scholar 

  120. Plass, R., Walraven, J., Tanner, D., Sexton, F. (2003) Anodic oxidation-induced delamination of the SUMMiT poly 0 to silicon nitride interface. In Proc. SPIE, 4980, 81–86.

    Article  Google Scholar 

  121. Walker, J.A., Gabriel, K.J., Mehregany, M. (1990) Mechanical integrity of polysilicon films exposed to hydrofluoric acid solutions. In: Proceedings from IEEE MEMS, Napa Valley, CA, February 11–14, 56–60.

    Google Scholar 

  122. Chasiotis, I., Knauss, W.G. (2003) The mechanical strength of polysilicon films: part 1. The influence of fabrication governed surface conditions. J. Mech. Phys. Solids 51, 1533–1550.

    Article  Google Scholar 

  123. Sharpe, W.N., Brown, J.S., Johnson, G.C., Knauss W.G. (1998) Round-robin tests of modulus and strength of polysilicon. Materials Research Society Proceedings, Vol. 518, San Francisco, CA, pp. 57–65.

    Google Scholar 

  124. LaVan, D.A., Tsuchiya, T., Coles, G., Knauss, W.G., Chasiotis, I., Read, D. (2001) Cross comparison of direct strength testing techniques on polysilicon films. In Muhlstein, C., Brown, S.B. (eds) Mechanical Properties of Structural Films, ASTM STP.

    Google Scholar 

  125. Sinclair, J.D. (1988) Corrosion of electronics, the role of ionic substances. J. Electrochem. Soc. March 1988, p. 89C.

    Google Scholar 

  126. Yan, B.D., Meilink, S.L., Warren, G.W., Wynblatt, P. (1986) Proc. Electron. Components Conf., 36, 95.

    Google Scholar 

  127. Peck, D.S. (1986) Comprehensive model for humidity testing correlation. Annual Proceedings – Reliability Physics (Symposium), 44–50.

    Google Scholar 

  128. Bitko, G., Monk, D.J., Maudie, T., Stanerson, D., Wertz, J., Matkin, J., Petrovic, S. Analytical techniques for examining reliability and failure mechanisms of barrier-coated encapsulated silicon pressure sensors exposed.

    Google Scholar 

  129. Hamzah, A.A., Husaini, Y., Majlis, B.Y., Ahmad, I. (2008) Selection of high strength encapsulant for MEMS devices undergoing high-pressure packaging. Microsyst.Technol. 14(6), 766.

    Article  Google Scholar 

  130. Forehand, D.I., Goldsmith, C.L. (2005) Wafer Level Micropackaging for RF MEMS Switches. 2005 ASME InterPACK ‘05 Tech Conf, San Francisco, CA, July 2005.

    Google Scholar 

  131. Rebeiz, G.M. (2003) RF MEMS switches: status of the technology. Proceedings of Transducers 2003, The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8–12, 1726.

    Google Scholar 

  132. Koons, H.C., Mazur, J.E., Selesnick, R.S., Blake, J.B., Fennell, J.F., Roeder, J.L., Anderson, P.C. (1670) The impact of the space environment on space systems. Aerospace Corp. report no. TR-99 (1670)-1, 20 July 1999.

    Google Scholar 

  133. George, T. (2003) Overview of MEMS/NEMS technology development for space applications at NASA/JPL. Proceedings of SPIE, Proc. SPIE Int. Soc. Opt. Eng. 5116, 136.

    Google Scholar 

  134. Eberl, C. et al. (2006) Ultra high-cycle fatigue in pure Al thin films and line structures. Mater. Sci. Eng. A, 421(1–2), 15 April 2006, 68–76.

    Google Scholar 

  135. Greywall, D. et al. (2003) Crystalline silicon tilting mirrors for optical cross-connect switches. IEEE/ASME Journal of Microelectromechanical Systems 12(5), 708

    Google Scholar 

  136. Arney, A., Gasparyan, A., Shea, H., SPIE Short course 434, Designing MEMS for reliability, presented at SemiCon West 2003, San Francisco, CA, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allyson L. Hartzell .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hartzell, A.L., da Silva, M.G., Shea, H.R. (2011). In-Use Failures. In: MEMS Reliability. MEMS Reference Shelf. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6018-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6018-4_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6017-7

  • Online ISBN: 978-1-4419-6018-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics