Skip to main content

Bacterial Biosurfactants, and Their Role in Microbial Enhanced Oil Recovery (MEOR)

  • Chapter
Biosurfactants

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 672))

Abstract

Surfactants are chemically synthesized surface-active compounds widely used for large number of applications in various industries. During last few years there is increase demand of biological surface-active compounds or biosurfactants which are produced by large number of microorganisms as they exert biodegradability, low toxicity and widespread application compared to chemical surfactants. They can be used as emulsifiers, de-emulsifiers, wetting agents, spreading agents, foaming agents, functional food ingredients and detergents. Various experiments at laboratory scale on sand-pack columns and field trials have successfully indicated effectiveness of biosurfactants in microbial enhanced oil recovery (MEOR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbial Mol Biol Rev 1997; 61:47–64.

    CAS  Google Scholar 

  2. Lin SC. Biosurfactants: Recent advances. J Chem Tech Biotechnol 1996; 66:109–120.

    Article  CAS  Google Scholar 

  3. Makkar RS, Cameotra SS. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 2002; 58:428–434.

    Article  CAS  PubMed  Google Scholar 

  4. Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends in Biotechnol 2006; 24:509–515.

    Article  CAS  Google Scholar 

  5. Singh A, Hamme V, Jonathan D et al. Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 2007; 25:99–121.

    Article  CAS  PubMed  Google Scholar 

  6. Edsar C. Focus on surfactants. Latest Market Analysis 2006; 5:1–2.

    Google Scholar 

  7. Cooper DG. Biosurfactants. Microbiol Sci 1986; 3:32–38.

    Google Scholar 

  8. Desai JD. Microbial surfactants; evaluation, types and future applications. J Sci Ind Res 1987; 46:440–449.

    CAS  Google Scholar 

  9. Rosenberg E. Microbial surfactants. Crit Rev Biotechnol 1986; 3:109–132.

    Article  CAS  Google Scholar 

  10. Syldatk C, Wagner F. Production of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC, eds, Biosurfactants and Biotechnology. New York: Marcel Dekker, Inc., 1987:89–120.

    Google Scholar 

  11. Banat IM, Makkar RS, Cameotra SS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 2000; 53:495–508.

    Article  CAS  PubMed  Google Scholar 

  12. Maier RM. Biosurfactants: Evolution and diversity in bacteria. Adv Appl Microbiol 2003; 52:101–121.

    Article  CAS  PubMed  Google Scholar 

  13. Cui Z, Liu W, Qi Y et al. Isolation of biosurfactant producing bacteria and characteristics of the biosurfactant. Bing Turang (Nanjing, China) 2004; 36:644–647.

    CAS  Google Scholar 

  14. Ilori MO, Amobi CJ, Odocha AC. Factors affecting biosurfactant production by oil degrading aeromonas sp isolated from a tropical environment. Chemosphere 2005; 61:985–992.

    Article  CAS  PubMed  Google Scholar 

  15. Noah KS, Fox SL, Bruhn DF et al. Development of continuous surfactin production from potato effluent by bacillus subtilis in an airlift reactor. Appl Biochem Biotechnol 2002; 98–100:803–813.

    Article  PubMed  Google Scholar 

  16. Nitschke M, Pastore GM. Biosurfactant production by B. subtilis using cassava-processing effluent. Appl Bichem Biotechnol 2004; 112:163–172.

    Article  CAS  Google Scholar 

  17. Lee SC, Yoo JS, Kim SH et al. Production and characterization of lipopeptide biosurfactant from bacillus subtilis A8-8. J Microbiol Biotechnol 2006; 16:716–723.

    CAS  Google Scholar 

  18. Kim JS, Song H, Chung N et al. Optimization of production conditions of biosurfactant from bacillus sp and its purification. Eungyong Sangmyong Hwahakhoeji 2005; 48:109–114.

    CAS  Google Scholar 

  19. Kim P, Kim JH. Characterization of a novel lipopolysaccharide biosurfactant from klebsiella oxitoca. Biotechnol Bioprocess Eng 2005; 10:494–499.

    Article  CAS  Google Scholar 

  20. Vasileva TE, Gesheva V. Biosurfactant production by antartica facultative anaerobe pantoea sp during growth on hydrocarbons. Current Microbiol 2007; 54:136–141.

    Article  CAS  Google Scholar 

  21. Haba E, Espuny MJ, Busquets M et al. Screening and production of rhamnolipids by pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol 2000; 88:379–387.

    Article  CAS  PubMed  Google Scholar 

  22. Abalos A, Pinazo A, Infante MR et al. Physicochemical and antimicrobial properties of new rhamnolipids produced by pseudomonas aeruginosa AT10 from soyabean oil refinery wastes. Langmuir 2001; 17:1367–71.

    Article  CAS  Google Scholar 

  23. Rahman KSM, Rahman TJ, McClean S et al. Rhamnolipid biosurfactant production by strains of pseudomonas aeruginosa using low-cost raw materials. Bitechnol Prog 2002; 18:1277–81.

    Article  CAS  Google Scholar 

  24. Nitschke M, Costa SGVAO, Haddad R et al. Oil wastes as unconventional substrates for rhamnolipids by pseudomonas aeruginosa LB1. Bitechnol Prog 2005; 21:1562–66.

    Article  CAS  Google Scholar 

  25. Rashedi H, Jamshidi E, Assadi M. Isolation and production of biosurfactant from pseudomonas aeruginosa from iranian southern wells soil. Int J Enviorn Sci Technol 2005; 2:121–127.

    CAS  Google Scholar 

  26. Rashedi H, Mazaheri AM, Jamshidi E et al. Optimization of the production of biosurfactant by pseudomonas aeruginosa HR isolated from an iranian southern oil well. Iranian J Chem and Chemical Eng 2006; 25:25–30.

    CAS  Google Scholar 

  27. Vasileva TE, Galabova D, Stoimenova E et al. Production and properties of biosurfactants from newly isolated pseudomonas fluorescens HW-6 growing on hexadecane. J Biosciences 2006; 61:553–559.

    Google Scholar 

  28. Chen SY, Lu WB, Wei YH et al. Improved production of biosurfactant with newly isolated pseudomonas aeruginosa S2. Biotechnol Prog 2007; 23:661–666.

    Article  CAS  PubMed  Google Scholar 

  29. Sifour M, Al-Jilawi MH, Aziz GM. Emulsification properties of biosurfactant produced from pseudomonas aeruginosa RB 28. Pakistan J Biological Sci 2007; 10:1331–35.

    Article  CAS  Google Scholar 

  30. Chang JS, Chou CL, Lin GH et al. Pseudoxanthomonas kaohsiungensis, sp nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Systematic and Applied Microbiology 2005; 28:137–144.

    Article  CAS  PubMed  Google Scholar 

  31. Trummler K, Effenberger F, Syldatk C. An integrated microbial/enzymatic process for production of rhamnolipids and l-(+)-rhamnose from rapeseed oil with pseudomonas sp DSM 2874. Eur J Lipid Sci Tech 2003; 105:563–71.

    Article  CAS  Google Scholar 

  32. Yin H, Xie D, Peng H et al. Study on the pseudomonas XD-1 releasing biosurfactants. Huanjing Kexue Xuebao 2005; 25:220–225.

    CAS  Google Scholar 

  33. Rodrigues LR, Teixeira JA, van der Mei HC et al. Isoaltion and partial characterization of a biosurfactant produced by streptococcus thermophilus A. Colloids and Syrfaces, B: Biointerfaces 2006; 53:105–112.

    Article  CAS  Google Scholar 

  34. Rodrigues L, Moldes A, Teixeria J et al. Kinetic study of fermentative biosurfactant production by lactobacillus strains. Biochem Eng J 2006; 28:109–116.

    Article  CAS  Google Scholar 

  35. Rashedi H, Mazaheri A, Mahnaz J et al. Optimization of the production of biosurfactant by pseudomonas aeruginosa HR isolated from an iranian southern oil well. Iranian J Chem Chemical Eng 2006; 25:25–30.

    CAS  Google Scholar 

  36. Cooper DG, Goldenberg BG. Surface active agents from two bacillus species. Appl Enviorn Microbiol 1987; 53:224–229.

    CAS  Google Scholar 

  37. Tugrul T, Cansunar E. Detecting surfactant-producing microorganisms by the drop-collapse test. World J Microbiol Biotechnol 2005; 21:851–853.

    Article  CAS  Google Scholar 

  38. Van der Vegt W, Vander Mei HC, Noordmans J et al. Assesment of bacterial biosurfactant production through axisymmetric drop shape analysis by profile. Appl Microbiol Biotech 1991; 35:766–770.

    Article  Google Scholar 

  39. Shulga AN, Karpenko EV, Eliseev SA et al. The method for determination of anionogenic bacterial surface-active peptidolipids. Microbiol Journal 1993; 55:85–88.

    CAS  Google Scholar 

  40. Lin SC, Sharma MM, Georgiou G. Production and deactivation of biosurfactant by bacillus licheniformis JF-2. Biotechnology Prog 1993; 9:138–145.

    Article  CAS  Google Scholar 

  41. Lin SC, Minton MA, Sharma MA et al. Structural and immunological characterization of a biosurfactant produced by bacillus licheniformis JF-2. Appl Enviorn Microbiol 1994; 60:31–38.

    CAS  Google Scholar 

  42. Heieh FC, Li MC, Lin TC. Rapid detection and characterization of surfactin-producing bacillus subtilis and closely related species based on PCR. Current Microbiol 2004; 49:186–191.

    Google Scholar 

  43. Rashedi H, Mazaherri A, Jamshidi E et al. Production of rhamnolipids by pseudomonas aeruginosa growing on carbon sources. Int J Enviorn Sc Technol 2006; 3:297–303.

    CAS  Google Scholar 

  44. Rodrigues L, Teixeria J, Oliveira R et al. Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria. Process Biochem 2006; 41:1–10.

    Article  CAS  Google Scholar 

  45. Dubey K, Juwarkar A. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World J Microbiol Biotechnol 2001; 17:61–69.

    Article  CAS  Google Scholar 

  46. Mulligan CN, Mahmourides G, Gibbs BF. The influence of phosphate metabolism on biosurfactant production by Pseudomonas aeruginosa. J Biotechnol 1989; 12:199–210.

    Article  CAS  Google Scholar 

  47. Guerra-Santos IH, Kappeli O, Fiechter A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Enviorn Microbiol 1984; 48:301–305.

    CAS  Google Scholar 

  48. Reiling HE, Wyass UT, Guerra-Santos LH et al. Pilot plant production of rhamnolipid biosurfactant by pseudomonas aeruginosa. Appl Enviorn Microbiol 1986; 51:985–989.

    CAS  Google Scholar 

  49. Morita T, Konishi M, Fukuoka T et al. Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between pseudozyma antartica and pseudozyma aphidis. Appl Microbiol Biotechnol 2007; 74:307–315.

    Article  CAS  PubMed  Google Scholar 

  50. Deziel E, Lepine F, Milot S et al. rhlA is required for the production of a novel biosurfactant promoting swarming motility in pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiol 2003; 149:2005–13.

    Article  CAS  Google Scholar 

  51. Raza Z, Khan MS, Khalid ZM et al. Production kinetics and tensioactive characteristics of biosurfactant from a pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol Lett 2006; 28:1623–31.

    Article  CAS  PubMed  Google Scholar 

  52. Wei YH, Chou CL, Chang JS. Rhamnolipid production by indigeneous pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochemical Engineering J 2005; 27:146–154.

    Article  CAS  Google Scholar 

  53. Wu JY, Yeh KL, Lu WB et al. Rhamnolipid production with indigenous pseudomonas aeruginosa EM 1 isolated from oil-contaminated site. Bioresource Technol 2008; 99:1157–64.

    Article  CAS  Google Scholar 

  54. Wei YH, Chu IM. Enhancement of surfactin production in iron-enriched media by bacillus subtilis ATCC 21332. Enz Microb Technol 1998; 22:724–728.

    Article  CAS  Google Scholar 

  55. Wei YH, Wang LF, Chang JS et al. Identification of induced acidification in iron-enriched cultures of bacillus subtilis during biosurfactant fermentation. J Biosci Bioeng 2003; 96:174–178.

    CAS  PubMed  Google Scholar 

  56. Wei YH, Wang LF, Chang JS. Optimizing iron supplement strategies for ehanced surfactin production with bacillus subtilis. Biotechnol Progress 2004; 20:979–983.

    Article  CAS  Google Scholar 

  57. Wei YH, Chu IM. Mn2+ imprives production of surfactin by bacillus subtilis. Biotechnol Lett 2002; 24:479–482.

    Article  CAS  Google Scholar 

  58. Wei YH, Lai CC, Chang JS. Using taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by bacillus subtilis ATCC 21332. Process Biochem 2007; 42:40–45.

    Article  CAS  Google Scholar 

  59. Makkar RS, Cameotra. Effects of various nutritional supplements on biosurfactant production by a strain of bacillus subtilis at 45°C. J Surfactants Detergents 2006; 5:11–17.

    Article  Google Scholar 

  60. Ferraz C, De Araujo AA, Pastore GM. The influence of vegetable oils on biosurfactant production by serratia marcescens. Appl Biochem Biotechnol 2002; 98–100:841–847.

    Article  PubMed  Google Scholar 

  61. Thaniyavarn S, Pinphanichkarn P, Leepipatpiboon N et al. Biosurfactant production by pseudomonas aeruginosa A41 using palm oil as carbon source. J General and Applied Microbiol 2006; 52:215–222.

    Article  CAS  Google Scholar 

  62. Raza ZA, Rehman A, Khan MS et al. Improved production of biosurfactant by a pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation 2007; 18:115–121.

    Article  CAS  PubMed  Google Scholar 

  63. Dubey K, Juwarkar A. Determination of genetic basis for biosurfactant production in distillery and curd whey wastes utilizing pseudomonas aeruginosa strain BS2. Indian J Biotechnol 2004; 3:74–81.

    CAS  Google Scholar 

  64. Rodrigues LR, Teixeira JA, Oliveira R. Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochemical Engineering Journal 2006; 32:135–142.

    Article  CAS  Google Scholar 

  65. Thompson DN, Fox SL, Bala G. Biosurfactants from potato process effluents. Appl Biochem Biotechnol 2000; 84–86:917–930.

    Article  PubMed  Google Scholar 

  66. Thompson DN, Fox SL, Bala GA. The effect of pretreatments on surfactin. Biotechnol 2001; 91–93:487–501.

    Google Scholar 

  67. Noah KS, Bruhn DF, Bala GA. Surfactin production from potato process effluent by bacillus subtilis chemostat. Appl Biochem Biotechnol 2005; 122:465–473.

    Article  Google Scholar 

  68. Nitschke M, Pastore G. Production and properties of a surfactant obtained from bacillus subtilis grown on cassava wastewater. Bioresource Technol 2006; 97:335–341.

    Article  CAS  Google Scholar 

  69. Nitschke M, Pastore G. Cassava flour wastewater as a substate for biosurfactant production. Appl Biochem Biotechnol 2003; 106:295–302.

    Article  Google Scholar 

  70. Raza ZA, Khan MS, Khalid ZM. Physicochemical and surface-active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J Enviornmental Science and Health, Part A: Toxic/Hazardous Substances and Enviornmental Engineering 2007; 42:73–80.

    Article  CAS  Google Scholar 

  71. Moldes AB, Torrado AM, Barral MT et al. Evaluation of biosurfactant production from various agricultural residues by lactobacillus pentosus. J Agric Food Chem 2007; 55:4481–86.

    Article  CAS  PubMed  Google Scholar 

  72. Joshi S, Yadav S, Nerurkar A et al. Statistical optimization of medium components for the production of biosurfactant by bacillus licheniformis K51. J Microbiol Biotechnol 2007; 17:313–319.

    CAS  PubMed  Google Scholar 

  73. Banat IM. The isolation of a thermophilic biosurfactant producing bacillus sp. Biotechnol Lett 1993; 15:591–94.

    Article  CAS  Google Scholar 

  74. Sharp RJ, Munster B. Thermophiles. In: Herbert RA, Codd GA, eds. Microbes in Extreme Environments. London: Academic Press, 1986.

    Google Scholar 

  75. Weigel J, Ljungdaht LG. Importance of thermophilic bacteria in biotechnology. CRC Rev Biotechnol 1986; 3:39–108.

    Article  Google Scholar 

  76. Philips WE, Perry JJ. Thermomisrobium fosteri sp nov. A hydrocarbon utilizing obligate thermophile. Int J Syst Bacteriol 1976; 26:220–225.

    Article  Google Scholar 

  77. Jenneman GE, McInerney MJ, Knapp RM et al. A halotolerant biosurfactant producing bacillus species potentially useful for enhanced oil recovery. Dev Ind Microbiol 1983; 24:485–492.

    CAS  Google Scholar 

  78. Trebbau de Acevado G, McInerney MJ. Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol 1996; 16:1–7.

    Article  Google Scholar 

  79. Gurjar M, Khire JM, Khan MI. Bioemulsifier production by bacillus stearothermophilus VR-8 isolate. Lett Appl Microbiol 1995; 21:83–86.

    Article  CAS  Google Scholar 

  80. Cirigliano MC, Carman GM. Isolation of bioemulsifier from candida lipolytica. Appl Environ Microbiol 1984; 48:747–750.

    CAS  PubMed  Google Scholar 

  81. Singh M, Desai JP. Hydrocarbon emulsification by candida tropicalis and debaromyces polymirphus. Indian J Expt Biol 1989; 27:224–226.

    CAS  Google Scholar 

  82. Pruthi V, Cameotra SS. Production, properties of a biosurfactant synthesized by arthrobacter protophormiae-an antartica strain. World J Microbiol Biotechnol 1997; 13:137–139.

    Article  CAS  Google Scholar 

  83. Zukerberg A, Diver A, Peeri D et al. Emulsifier of arthrobacter RAG-1: chemical and physical properties. Appl Environ Microbiol 1979; 37:414–420.

    Google Scholar 

  84. Rosenberg E, Rubinovitz C, Gottlieb A et al. Production of biodispersan by acinetobacter calcoacticus A2. Appl Environ Microbiol 1988; 54:317–322.

    CAS  PubMed  Google Scholar 

  85. Huszcza E, Burczyk B. Biosurfactant from bacillus coagulas. J Surfactants Detergents 2003; 6:61–64.

    Article  CAS  Google Scholar 

  86. Chameotra SS, Singh HD. Purification and characterization of alkane solubilizing factor produced by pseudomonas PG-1. J Ferment Bioeng 1990; 69:341–344.

    Article  Google Scholar 

  87. Kuyukina MS, Ivshina IB, Philip JC et al. Recovery of rhodococcus biosurfactants using methyl tertiary butyl ether extraction. J Microbiol Methods 2001; 46:149–156.

    Article  CAS  PubMed  Google Scholar 

  88. Lin SC, Jiang HJ. Recovery and purification of the lipopeptide biosurfactant of bacillus subtilis by ultrafiltration. Biotechnol Techniques 1997; 11:413–416.

    Article  CAS  Google Scholar 

  89. Chen CY, Baker SC, Darton RC. Continuous production of biosurfactant with foam fractionation. J Chemical Technology and Biotechnology 2006; 81:1915–22.

    Article  CAS  Google Scholar 

  90. Dubey KV, Juwarkar AA. Adsorption-desorption process using wood-based activated carbon for recovery of biosurfactant from fermented distillery wastewater. Biotechnol Progress 2005; 21:860–867.

    Article  CAS  Google Scholar 

  91. Cho SK, Shim SH, Park KR et al. Purification and characterization of biosurfactant produced by pseudomonas sp G11 by assymetrical flow field-flow fractionation (AsFlFFF). Anal Bioanalytical Chemistry 2006; 386:2027–33.

    Article  CAS  Google Scholar 

  92. Haferburg D, Hommel R, Claus R et al. Extra-cellular microbial lipids as biosurfactants. Adv Biochem Eng Biotechnol 1986; 33:53–93.

    CAS  Google Scholar 

  93. Montel D, Ratomahenina R, Glazy P. A study of the influence of the growth media on the fatty acids composition in Candida lipolytica. Biotechnol Lett 1985; 7:733–736.

    Article  Google Scholar 

  94. Ratledge C. Lipid biotechnology: a wonderland for the microbial physiologist. J Am Oil Chem Soc 1987; 64:1647–56.

    Article  CAS  Google Scholar 

  95. Yamane T. Enzyme technology for the lipid industry: an engineering overview. J Am Oil Chem Soc 1987; 64:1657–62.

    Article  CAS  Google Scholar 

  96. Brown WA, Cooper DG. Self-cycling fermentation applied to acinetobacter calcoaceticus RAG-1. Appl Enviorn Microbiol 1991; 57:2901–06.

    CAS  Google Scholar 

  97. Zenaitis MG, Cooper DG. Antibiotic production by streptomyces aureofaciens using self-cycling fermentation. Biotechnol Bioeng 1994; 44:1331–36.

    Article  CAS  PubMed  Google Scholar 

  98. Dubern JF, Lagendijk EL, Lugtenberg BJ et al. The heat shock genes dnaK, dnaJ and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J Bacteriol 2005; 187:5967–76.

    Article  CAS  PubMed  Google Scholar 

  99. Bashandy As, Abu Shady HM, Aziz NH et al. Enhanced production and properties of a surfactant by a gamma ray induced mutant of bacillus subtilis. Egyptian J Biotechnol 2005; 20:290–303.

    CAS  Google Scholar 

  100. Liu Q, Li Q. Breeding of biosurfactant producing strain. Weishengwuxue Zazhi 2005; 25:54–56.

    Google Scholar 

  101. Khire JM, Khan MI. Microbially enhanced oil recovery (MEOR). Part 1. Importance and mechanism of MEOR.Enz Microbiol Technol 1994; 16:170–172.

    Article  CAS  Google Scholar 

  102. Khire JM, Khan MI. Microbially enhanced oil recovery (MEOR). Part 2. Microbes and subsurface environment for MEOR.Enz Microbiol Technol 1994; 16:258–259.

    Article  Google Scholar 

  103. Li Q, Kang C, Wang H et al. Application of microbial enhanced oil recovery technique to daqing oilfield. Biochemical Engineering Journal 2002; 11:197–199.

    Article  CAS  Google Scholar 

  104. Saidi AM. Simulation of naturally fractured reservoirs. SPE symposiumon reservoir simulations, San Francisco, California, USA. 1983. SPE Paper 12270.

    Google Scholar 

  105. Delshad M, Asakawa K, Pope GA et al. Simulation of chemical and microbial enhanced oil recovery methods. DEO/SPE Improved oil recovery symposium, Tulsa, Oklahoma, USA. 2002. SPE paper 36746.

    Google Scholar 

  106. Soudmand-asli A, Ayatollahi SS, Mohabatkar H et al. The in situ microbial enhanced oil recovery in fractured porous media. J Petroleum Science and Engineering 2007; 58:161–172.

    Article  CAS  Google Scholar 

  107. Jinfeng L, Lijun M, Bozhong M et al. The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir. J Petroleum Science Engineering 2005; 48:265–271.

    Article  CAS  Google Scholar 

  108. Youssef N, Simpson DR, Duncan KE et al. In situ biosurfactant production by bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 2007; 73:1239–47.

    Article  CAS  PubMed  Google Scholar 

  109. Nazina TN, Griror’yan AA, Feng Q et al. Microbiological and production characteristics of the high temperature kongdian petroleum reservoir revealed during field trial of biotechnology for the enhancement of oil recovery. Microbiology 2007; 76:297–309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Khire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Khire, J.M. (2010). Bacterial Biosurfactants, and Their Role in Microbial Enhanced Oil Recovery (MEOR). In: Sen, R. (eds) Biosurfactants. Advances in Experimental Medicine and Biology, vol 672. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5979-9_11

Download citation

Publish with us

Policies and ethics