Skip to main content

Stem Cells and Cancer

  • Chapter
  • First Online:
Origin of Cancers

Part of the book series: Cancer Treatment and Research ((CTAR,volume 154))

  • 985 Accesses

Précis

In principle, any cell with stem-cell properties is poised to become malignant given the right conditions and circumstances. The stem-cell characteristic is what gives cancer its free rein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCallum H, Tompkins DM, Jones M et al (2007) Distribution and impacts of Tasmanian devil facial tumor disease. Ecohealth 4:318–325

    Article  Google Scholar 

  2. Pearse A-M, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439:549

    Article  CAS  PubMed  Google Scholar 

  3. Siddle HV, Kreiss A, Eldridge MD et al (2007) Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci USA 104:16221–16226

    Article  CAS  PubMed  Google Scholar 

  4. Loh R, Bergfeld J, Hayes D et al (2006) The pathology of devil facial tumor disease (DFTD) in Tasmanian devils (Sarcophilus harrisii). Vet Pathol 43:890–895

    Article  CAS  PubMed  Google Scholar 

  5. Jones ME, Paetkau D, Geffen E, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13:2197–2209

    Article  CAS  PubMed  Google Scholar 

  6. Barsky SH, Ye Y, Xiao Y, Yearley K (2008) Insights into the stem cell origin of human cancers by studying a registry of bone marrow and other organ transplant recipients who later developed solid tumors [abstr]. Am Soc Clin Oncol 580 [Abstract 11010]

    Google Scholar 

  7. Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM (2006) Gene therapy: therapeutic gene causing lymphoma. Nature 440:1123

    Article  CAS  PubMed  Google Scholar 

  8. Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256

    Article  PubMed  Google Scholar 

  9. Marshall E (2003) Second child in French trial is found to have leukemia. Science 299:320

    Article  CAS  PubMed  Google Scholar 

  10. Boyd CN, Ramberg RC, Thomas ED (1982) The incidence of recurrence of leukemia in donor cells after allogeneic bone marrow transplantation. Leuk Res 6:833–837

    Article  CAS  PubMed  Google Scholar 

  11. Cooley LD, Sears DA, Udden MM, Harrison WR, Baker KR (2000) Donor cell leukemia: report of a case occurring 11 years after allogeneic bone marrow transplantation and review of the literature. Am J Hematol 63:46–53

    Article  CAS  PubMed  Google Scholar 

  12. Hambach L, Eder M, Dammann E et al (2001) Donor cell-derived acute myeloid leukemia developing 14 months after matched unrelated bone marrow transplantation for chronic myeloid leukemia. Bone Marrow Transplant 28:705–707

    Article  CAS  PubMed  Google Scholar 

  13. Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–331

    Article  CAS  PubMed  Google Scholar 

  14. Warner KE, Mackay JL (2008) Smoking cessation treatment in a public-health context [comment]. Lancet 371:1976–1978

    Article  PubMed  Google Scholar 

  15. Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571

    Article  CAS  PubMed  Google Scholar 

  16. Cosme-Blanco W, Shen MF, Lazar AJ et al (2007) Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep 8:497–503

    Article  CAS  PubMed  Google Scholar 

  17. Morrison S (2006) Stem cell self-renewal, cancer cell proliferation, and aging. In: 59th annual symposium on cancer research: stem cells in cancer and regenerative medicine, Houston, TX, October 27–29, p 37

    Google Scholar 

  18. Janzen V, Forkert R, Fleming H et al (2006) Stem cell aging modified by the cyclin dependent kinase inhibitor, p16INK4a. Nature 443:421–426

    CAS  PubMed  Google Scholar 

  19. Krishnamurthy J, Ransey M, Ligon K, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16INK4a induces age-dependent decline in islet regenerative potential [letter]. Nature 443:453–457

    Article  CAS  PubMed  Google Scholar 

  20. Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16Ink4a expression reduces forebrain progenitor function and neurogenesis during aging. Nature 443:448–452

    Article  CAS  PubMed  Google Scholar 

  21. Ornish D, Lin J, Daubenmier J et al (2008) Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol 9:1048–1057, Erratum in Lancet Oncol 2008;9(12):1124

    Article  CAS  PubMed  Google Scholar 

  22. Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6:637–645

    Article  CAS  PubMed  Google Scholar 

  23. Ju Z, Rudolph KL (2006) Telomeres and telomerase in cancer stem cells. Eur J Cancer 42:1197–1203

    Article  CAS  PubMed  Google Scholar 

  24. Flores I, Cayuela ML, Blasco MA (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309:1253–1256

    Article  CAS  PubMed  Google Scholar 

  25. Fukasawa K, Wiener F, Vande Woude GF, Mai S (1997) Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene 15:1295–1302

    Article  CAS  PubMed  Google Scholar 

  26. Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Ming Tu .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tu, SM. (2010). Stem Cells and Cancer. In: Origin of Cancers. Cancer Treatment and Research, vol 154. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5968-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5968-3_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5967-6

  • Online ISBN: 978-1-4419-5968-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics