Skip to main content

Metastasis

  • Chapter
  • First Online:
Origin of Cancers

Part of the book series: Cancer Treatment and Research ((CTAR,volume 154))

  • 955 Accesses

Précis

The metastatic potential of a tumor may be programmed from the start. The versatility and “ingenuity” of a metastatic cell can be matched only by those of a stem cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–331

    Article  CAS  PubMed  Google Scholar 

  2. Heissig B, Hattori K, Dias S et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell 109:625–637

    Article  CAS  PubMed  Google Scholar 

  3. Geminder H, Sagi-Assif O, Goldberg L et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167:4747–4757

    CAS  PubMed  Google Scholar 

  4. Müller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  Google Scholar 

  5. Peled A, Petit I, Kollet O et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Article  CAS  PubMed  Google Scholar 

  6. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  CAS  PubMed  Google Scholar 

  7. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  8. Sell S, Pierce GB (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70:6–22

    CAS  PubMed  Google Scholar 

  9. Kramer RH, Nicolson GL (1979) Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci USA 76:5704–5708

    Article  CAS  PubMed  Google Scholar 

  10. Liotta LA, Wewer U, Rao NC et al (1988) Biochemical mechanisms of tumor invasion and metastases. Prog Clin Biol Res 256:3–16

    CAS  PubMed  Google Scholar 

  11. Kohn EC, Francis EA, Liotta LA et al (1990) Heterogeneity of the motility responses in malignant tumor cells: a biological basis for the diversity and homing of metastatic cells. Int J Cancer 46:287–292

    Article  CAS  PubMed  Google Scholar 

  12. Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours [letter]. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  13. van de Vijver MJ, He YD, van ’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  14. Ye Q-H, Qin L-X, Forgues M et al (2003) Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9:416–423

    Article  CAS  PubMed  Google Scholar 

  15. Khan ZA, Jonas SK, Le-Marer N et al (2000) p53 mutations in primary and metastatic tumors and circulating tumor cells from colorectal carcinoma patients. Clin Cancer Res 6:3499–3504

    CAS  PubMed  Google Scholar 

  16. Losi L, Benhattar J, Costa J (1992) Stability of K-ras mutations throughout the natural history of human colorectal cancer. Eur J Cancer 28A(6–7):1115–1120

    Article  CAS  PubMed  Google Scholar 

  17. Zauber P, Sabbath-Solitare M, Marotta SP et al (2003) Molecular changes in the Ki-ras and APC genes in primary colorectal carcinoma and synchronous metastases compared with the findings in accompanying adenomas. Mol Pathol 56:137–140

    Article  CAS  PubMed  Google Scholar 

  18. Dalerba P, Ricci A, Russo V et al (1998) High homogeneity of MAGE, BAGE, GAGE, tyrosinase and Melan-A/MART-1 gene expression in clusters of multiple simultaneous metastases of human melanoma: implications for protocol design of therapeutic antigen-specific vaccination strategies. Int J Cancer 77:200–204

    Article  CAS  PubMed  Google Scholar 

  19. D’Arrigo A, Belluco C, Ambrosi A et al (2005) Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int J Cancer 115:256–262

    Article  PubMed  Google Scholar 

  20. Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100:15901–15905

    Article  CAS  PubMed  Google Scholar 

  21. Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors [letter]. Nat Genet 33:49–54

    Article  CAS  PubMed  Google Scholar 

  22. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  23. Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418:823

    Article  CAS  PubMed  Google Scholar 

  24. Shah RB, Mehra R, Chinnaiyan AM et al (2004) Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 64:9209–9216

    Article  CAS  PubMed  Google Scholar 

  25. Lyden D, Young AZ, Zagzag D et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677

    Article  CAS  PubMed  Google Scholar 

  26. Park Y-G, Zhao X, Lesueur F et al (2005) Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 37:1055–1062

    Article  CAS  PubMed  Google Scholar 

  27. Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085

    Article  CAS  PubMed  Google Scholar 

  28. Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530, Erratum in Science 1998;281(5379):923

    Article  CAS  PubMed  Google Scholar 

  29. Gussoni E, Soneoka Y, Strickland CD et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    CAS  PubMed  Google Scholar 

  30. Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Article  CAS  PubMed  Google Scholar 

  31. Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  CAS  PubMed  Google Scholar 

  32. Petersen BE, Bowen WC, Patrene KD et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    Article  CAS  PubMed  Google Scholar 

  33. Aractingi S, Kanitakis J, Euvrard S et al (2005) Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res 65:1755–1760

    Article  CAS  PubMed  Google Scholar 

  34. Barsky SH, Ye Y, Xiao Y et al (2008) Insights into the stem cell origin of human cancers by studying a registry of bone marrow and other organ transplant recipients who later developed solid tumors [abstract]. J Clin Oncol 26(May 20 suppl) [Abstr 11010]

    Google Scholar 

  35. Grier HE, Krailo MD, Tarbell NJ et al (2003) Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 348:694–701

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Ming Tu .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tu, SM. (2010). Metastasis. In: Origin of Cancers. Cancer Treatment and Research, vol 154. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5968-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5968-3_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5967-6

  • Online ISBN: 978-1-4419-5968-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics