Part of the Cancer Treatment and Research book series (CTAR, volume 154)


The metastatic potential of a tumor may be programmed from the start. The versatility and “ingenuity” of a metastatic cell can be matched only by those of a stem cell.


Migration Dust Germinate Sarcoma Doxorubicin 


  1. 1.
    Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–331CrossRefPubMedGoogle Scholar
  2. 2.
    Heissig B, Hattori K, Dias S et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell 109:625–637CrossRefPubMedGoogle Scholar
  3. 3.
    Geminder H, Sagi-Assif O, Goldberg L et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167:4747–4757PubMedGoogle Scholar
  4. 4.
    Müller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56CrossRefPubMedGoogle Scholar
  5. 5.
    Peled A, Petit I, Kollet O et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848CrossRefPubMedGoogle Scholar
  6. 6.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458CrossRefPubMedGoogle Scholar
  7. 7.
    Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573CrossRefGoogle Scholar
  8. 8.
    Sell S, Pierce GB (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70:6–22PubMedGoogle Scholar
  9. 9.
    Kramer RH, Nicolson GL (1979) Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci USA 76:5704–5708CrossRefPubMedGoogle Scholar
  10. 10.
    Liotta LA, Wewer U, Rao NC et al (1988) Biochemical mechanisms of tumor invasion and metastases. Prog Clin Biol Res 256:3–16PubMedGoogle Scholar
  11. 11.
    Kohn EC, Francis EA, Liotta LA et al (1990) Heterogeneity of the motility responses in malignant tumor cells: a biological basis for the diversity and homing of metastatic cells. Int J Cancer 46:287–292CrossRefPubMedGoogle Scholar
  12. 12.
    Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours [letter]. Nature 406:747–752CrossRefPubMedGoogle Scholar
  13. 13.
    van de Vijver MJ, He YD, van ’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009CrossRefPubMedGoogle Scholar
  14. 14.
    Ye Q-H, Qin L-X, Forgues M et al (2003) Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9:416–423CrossRefPubMedGoogle Scholar
  15. 15.
    Khan ZA, Jonas SK, Le-Marer N et al (2000) p53 mutations in primary and metastatic tumors and circulating tumor cells from colorectal carcinoma patients. Clin Cancer Res 6:3499–3504PubMedGoogle Scholar
  16. 16.
    Losi L, Benhattar J, Costa J (1992) Stability of K-ras mutations throughout the natural history of human colorectal cancer. Eur J Cancer 28A(6–7):1115–1120CrossRefPubMedGoogle Scholar
  17. 17.
    Zauber P, Sabbath-Solitare M, Marotta SP et al (2003) Molecular changes in the Ki-ras and APC genes in primary colorectal carcinoma and synchronous metastases compared with the findings in accompanying adenomas. Mol Pathol 56:137–140CrossRefPubMedGoogle Scholar
  18. 18.
    Dalerba P, Ricci A, Russo V et al (1998) High homogeneity of MAGE, BAGE, GAGE, tyrosinase and Melan-A/MART-1 gene expression in clusters of multiple simultaneous metastases of human melanoma: implications for protocol design of therapeutic antigen-specific vaccination strategies. Int J Cancer 77:200–204CrossRefPubMedGoogle Scholar
  19. 19.
    D’Arrigo A, Belluco C, Ambrosi A et al (2005) Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int J Cancer 115:256–262CrossRefPubMedGoogle Scholar
  20. 20.
    Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100:15901–15905CrossRefPubMedGoogle Scholar
  21. 21.
    Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors [letter]. Nat Genet 33:49–54CrossRefPubMedGoogle Scholar
  22. 22.
    van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefGoogle Scholar
  23. 23.
    Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418:823CrossRefPubMedGoogle Scholar
  24. 24.
    Shah RB, Mehra R, Chinnaiyan AM et al (2004) Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 64:9209–9216CrossRefPubMedGoogle Scholar
  25. 25.
    Lyden D, Young AZ, Zagzag D et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677CrossRefPubMedGoogle Scholar
  26. 26.
    Park Y-G, Zhao X, Lesueur F et al (2005) Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 37:1055–1062CrossRefPubMedGoogle Scholar
  27. 27.
    Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085CrossRefPubMedGoogle Scholar
  28. 28.
    Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530, Erratum in Science 1998;281(5379):923CrossRefPubMedGoogle Scholar
  29. 29.
    Gussoni E, Soneoka Y, Strickland CD et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394PubMedGoogle Scholar
  30. 30.
    Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313CrossRefPubMedGoogle Scholar
  31. 31.
    Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377CrossRefPubMedGoogle Scholar
  32. 32.
    Petersen BE, Bowen WC, Patrene KD et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170CrossRefPubMedGoogle Scholar
  33. 33.
    Aractingi S, Kanitakis J, Euvrard S et al (2005) Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res 65:1755–1760CrossRefPubMedGoogle Scholar
  34. 34.
    Barsky SH, Ye Y, Xiao Y et al (2008) Insights into the stem cell origin of human cancers by studying a registry of bone marrow and other organ transplant recipients who later developed solid tumors [abstract]. J Clin Oncol 26(May 20 suppl) [Abstr 11010]Google Scholar
  35. 35.
    Grier HE, Krailo MD, Tarbell NJ et al (2003) Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 348:694–701CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations