Advertisement

Metastasis

  • Shi-Ming Tu
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 154)

Précis

The metastatic potential of a tumor may be programmed from the start. The versatility and “ingenuity” of a metastatic cell can be matched only by those of a stem cell.

Keywords

Stem Cell Metastatic Potential Metastatic Cell Maturation Arrest Progenitor Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–331CrossRefPubMedGoogle Scholar
  2. 2.
    Heissig B, Hattori K, Dias S et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell 109:625–637CrossRefPubMedGoogle Scholar
  3. 3.
    Geminder H, Sagi-Assif O, Goldberg L et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167:4747–4757PubMedGoogle Scholar
  4. 4.
    Müller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56CrossRefPubMedGoogle Scholar
  5. 5.
    Peled A, Petit I, Kollet O et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848CrossRefPubMedGoogle Scholar
  6. 6.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458CrossRefPubMedGoogle Scholar
  7. 7.
    Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573CrossRefGoogle Scholar
  8. 8.
    Sell S, Pierce GB (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70:6–22PubMedGoogle Scholar
  9. 9.
    Kramer RH, Nicolson GL (1979) Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci USA 76:5704–5708CrossRefPubMedGoogle Scholar
  10. 10.
    Liotta LA, Wewer U, Rao NC et al (1988) Biochemical mechanisms of tumor invasion and metastases. Prog Clin Biol Res 256:3–16PubMedGoogle Scholar
  11. 11.
    Kohn EC, Francis EA, Liotta LA et al (1990) Heterogeneity of the motility responses in malignant tumor cells: a biological basis for the diversity and homing of metastatic cells. Int J Cancer 46:287–292CrossRefPubMedGoogle Scholar
  12. 12.
    Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours [letter]. Nature 406:747–752CrossRefPubMedGoogle Scholar
  13. 13.
    van de Vijver MJ, He YD, van ’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009CrossRefPubMedGoogle Scholar
  14. 14.
    Ye Q-H, Qin L-X, Forgues M et al (2003) Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9:416–423CrossRefPubMedGoogle Scholar
  15. 15.
    Khan ZA, Jonas SK, Le-Marer N et al (2000) p53 mutations in primary and metastatic tumors and circulating tumor cells from colorectal carcinoma patients. Clin Cancer Res 6:3499–3504PubMedGoogle Scholar
  16. 16.
    Losi L, Benhattar J, Costa J (1992) Stability of K-ras mutations throughout the natural history of human colorectal cancer. Eur J Cancer 28A(6–7):1115–1120CrossRefPubMedGoogle Scholar
  17. 17.
    Zauber P, Sabbath-Solitare M, Marotta SP et al (2003) Molecular changes in the Ki-ras and APC genes in primary colorectal carcinoma and synchronous metastases compared with the findings in accompanying adenomas. Mol Pathol 56:137–140CrossRefPubMedGoogle Scholar
  18. 18.
    Dalerba P, Ricci A, Russo V et al (1998) High homogeneity of MAGE, BAGE, GAGE, tyrosinase and Melan-A/MART-1 gene expression in clusters of multiple simultaneous metastases of human melanoma: implications for protocol design of therapeutic antigen-specific vaccination strategies. Int J Cancer 77:200–204CrossRefPubMedGoogle Scholar
  19. 19.
    D’Arrigo A, Belluco C, Ambrosi A et al (2005) Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma. Int J Cancer 115:256–262CrossRefPubMedGoogle Scholar
  20. 20.
    Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100:15901–15905CrossRefPubMedGoogle Scholar
  21. 21.
    Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors [letter]. Nat Genet 33:49–54CrossRefPubMedGoogle Scholar
  22. 22.
    van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefGoogle Scholar
  23. 23.
    Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418:823CrossRefPubMedGoogle Scholar
  24. 24.
    Shah RB, Mehra R, Chinnaiyan AM et al (2004) Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 64:9209–9216CrossRefPubMedGoogle Scholar
  25. 25.
    Lyden D, Young AZ, Zagzag D et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677CrossRefPubMedGoogle Scholar
  26. 26.
    Park Y-G, Zhao X, Lesueur F et al (2005) Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 37:1055–1062CrossRefPubMedGoogle Scholar
  27. 27.
    Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085CrossRefPubMedGoogle Scholar
  28. 28.
    Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530, Erratum in Science 1998;281(5379):923CrossRefPubMedGoogle Scholar
  29. 29.
    Gussoni E, Soneoka Y, Strickland CD et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394PubMedGoogle Scholar
  30. 30.
    Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313CrossRefPubMedGoogle Scholar
  31. 31.
    Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377CrossRefPubMedGoogle Scholar
  32. 32.
    Petersen BE, Bowen WC, Patrene KD et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170CrossRefPubMedGoogle Scholar
  33. 33.
    Aractingi S, Kanitakis J, Euvrard S et al (2005) Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res 65:1755–1760CrossRefPubMedGoogle Scholar
  34. 34.
    Barsky SH, Ye Y, Xiao Y et al (2008) Insights into the stem cell origin of human cancers by studying a registry of bone marrow and other organ transplant recipients who later developed solid tumors [abstract]. J Clin Oncol 26(May 20 suppl) [Abstr 11010]Google Scholar
  35. 35.
    Grier HE, Krailo MD, Tarbell NJ et al (2003) Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 348:694–701CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations