Skip to main content

Application of Population Pharmacokinetic-Pharmacodynamic Approaches in the Design of Translational Strategies for Development of Antibody-Based Therapeutics

  • Chapter
  • First Online:
Development of Antibody-Based Therapeutics
  • 2393 Accesses

Abstract

Population-based pharmacokinetic-pharmacodynamic (PK-PD) approaches have been successfully applied in various stages of drug development over the last few decades. The development of antibody-based therapeutics has benefited substantially from the utilization of population approaches. Moreover, almost all FDA-approved monoclonal antibody therapeutics have been evaluated using population approaches. In this chapter, application of population PK-PD methods will be reviewed in the context of translational strategies employed during the development of antibody-based therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarons L (1999) Software for population pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 36:255–264

    Article  PubMed  CAS  Google Scholar 

  • Bauer RJ, Guzy S (2004) Monte Carlo parametric expectation maximization (MC-PEM) method for analyzing population pharmacokinetic/pharmacodynamic data. In: D’Argenio DZ (ed) Advanced methods of pharmacokinetic and pharmacodynamic systems analysis. Kluwer Academic Publishers, Boston, pp 135–163

    Chapter  Google Scholar 

  • Bauer RJ, Guzy S, Ng C (2007) A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. AAPS J 9:E60–E83

    Article  PubMed  Google Scholar 

  • Beal SL, Sheiner LB (1982) Estimating population kinetics. Crit Rev Biomed Eng 8:195–222

    PubMed  CAS  Google Scholar 

  • Betts AM, Clark TH, Yang J, Treadway JL, Li M et al (2010) The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther 333:2–13

    Article  PubMed  CAS  Google Scholar 

  • Coiffier B, Losic N, Ronn BB, Lepretre S, Pedersen LM et al (2010) Pharmacokinetics and pharmacokinetic/pharmacodynamic associations of ofatumumab, a human monoclonal CD20 antibody, in patients with relapsed or refractory chronic lymphocytic leukaemia: a phase 1–2 study. Br J Haematol 150:58–71

    PubMed  CAS  Google Scholar 

  • Dartois C, Freyer G, Michallet M, Henin E, You B et al (2007) Exposure-effect population model of inolimomab, a monoclonal antibody administered in first-line treatment for acute graft-versus-host disease. Clin Pharmacokinet 46:417–432

    Article  PubMed  CAS  Google Scholar 

  • Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement data. Chapman and Hall, New York

    Google Scholar 

  • Davidian M, Giltinan DM (2003) Nonlinear models for repeated measurement data: an overview and update. J Agr Biol Environ Stat 8:387–419

    Article  Google Scholar 

  • Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478

    Article  PubMed  CAS  Google Scholar 

  • Duan JZ (2007) Applications of population pharmacokinetics in current drug labelling. J Clin Pharm Ther 32:57–79

    Article  PubMed  CAS  Google Scholar 

  • Ette EI, Kelman AW, Howie CA, Whiting B (1995) Analysis of animal pharmacokinetic data: performance of the one point per animal design. J Pharmacokinet Biopharm 23:551–566

    Article  PubMed  CAS  Google Scholar 

  • Ette EI, Sun H, Ludden TM (1998) Balanced designs in longitudinal population pharmacokinetic studies. J Clin Pharmacol 38:417–423

    PubMed  CAS  Google Scholar 

  • Ette EI, Williams PJ (2004) Population pharmacokinetics II: estimation methods. Ann Pharmacother 38:1907–1915

    Article  PubMed  CAS  Google Scholar 

  • Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J et al (2009) Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol 65:1211–1228

    Article  PubMed  CAS  Google Scholar 

  • Forrest A, Ballow CH, Nix DE, Birmingham MC, Schentag JJ (1993) Development of a population pharmacokinetic model and optimal sampling strategies for intravenous ciprofloxacin. Antimicrob Agents Chemother 37:1065–1072

    PubMed  CAS  Google Scholar 

  • Frey N, Grange S, Woodworth T (2010) Population pharmacokinetic analysis of tocilizumab in patients with rheumatoid arthritis. J Clin Pharmacol 50:754–766

    Article  PubMed  CAS  Google Scholar 

  • Guidance for industry: drug interaction studies—study design, data analysis, and implications for dosing and labeling (ed) (2006) UFCfDEaR [CDER]. Rockville

    Google Scholar 

  • Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ (2007) A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol 63:548–561

    Article  PubMed  CAS  Google Scholar 

  • Huang SM, Zhao H, Lee JI, Reynolds K, Zhang L et al (2010) Therapeutic protein-drug interactions and implications for drug development. Clin Pharmacol Ther 87:497–503

    Article  PubMed  CAS  Google Scholar 

  • Keizer RJ, Huitema AD, Schellens JH, Beijnen JH (2010) Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49:493–507

    Article  PubMed  CAS  Google Scholar 

  • Kovarik JM, Pescovitz MD, Sollinger HW, Kaplan B, Legendre C et al (2001) Differential influence of azathioprine and mycophenolate mofetil on the disposition of basiliximab in renal transplant patients. Clin Transplant 15:123–130

    Article  PubMed  CAS  Google Scholar 

  • Lachmann HJ, Lowe P, Felix SD, Rordorf C, Leslie K et al (2009) In vivo regulation of interleukin 1beta in patients with cryopyrin-associated periodic syndromes. J Exp Med 206:1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Lammerts van Bueren JJ, Bleeker WK, Bogh HO, Houtkamp M, Schuurman J et al (2006) Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: implications for the mechanisms of action. Cancer Res 66:7630–7638

    Article  PubMed  CAS  Google Scholar 

  • Lee JI, Zhang L, Men AY, Kenna LA, Huang SM (2010) CYP-mediated therapeutic protein-drug interactions: clinical findings, proposed mechanisms and regulatory implications. Clin Pharmacokinet 49:295–310

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom ML, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687

    Article  PubMed  CAS  Google Scholar 

  • Lowe PJ, Tannenbaum S, Gautier A, Jimenez P (2009) Relationship between omalizumab pharmacokinetics, IgE pharmacodynamics and symptoms in patients with severe persistent allergic (IgE-mediated) asthma. Br J Clin Pharmacol 68:61–76

    Article  PubMed  CAS  Google Scholar 

  • Lowe PJ, Tannenbaum S, Wu K, Lloyd P, Sims J (2010) On setting the first dose in man: quantitating biotherapeutic drug-target binding through pharmacokinetic and pharmacodynamic models. Basic Clin Pharmacol Toxicol 106:195–209

    Article  PubMed  CAS  Google Scholar 

  • Lu JF, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J (2008) Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol 62:779–786

    Article  PubMed  CAS  Google Scholar 

  • Lunn DJ, Best N, Thomas A, Wakefield J, Spiegelhalter D (2002) Bayesian analysis of population PK/PD models: general concepts and software. J Pharmacokinet Pharmacodyn 29:271–307

    Article  PubMed  CAS  Google Scholar 

  • Ma P, Yang BB, Wang YM, Peterson M, Narayanan A et al (2009) Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol 49:1142–1156

    Article  PubMed  CAS  Google Scholar 

  • Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507–532

    Article  PubMed  CAS  Google Scholar 

  • Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72:1–10

    Article  PubMed  CAS  Google Scholar 

  • Meno-Tetang GM, Lowe PJ (2005) On the prediction of the human response: a recycled mechanistic pharmacokinetic/pharmacodynamic approach. Basic Clin Pharmacol Toxicol 96:182–192

    Article  PubMed  CAS  Google Scholar 

  • Mentre F, Gomeni R (1995) A two-step iterative algorithm for estimation in nonlinear mixed-effect models with an evaluation in population pharmacokinetics. J Biopharm Stat 5:141–158

    Article  PubMed  CAS  Google Scholar 

  • Mentre F, Kovarik J, Gerbeau C (1999) Constructing a prediction interval for time to reach a threshold concentration based on a population pharmacokinetic analysis: an application to basiliximab in renal transplantation. J Pharmacokinet Biopharm 27:213–230

    Article  PubMed  CAS  Google Scholar 

  • Monolix Users Manual (2008) Orsay. Laboratorie de Mathematiques, U. Paris-Sue, France

    Google Scholar 

  • Mould DR, Baumann A, Kuhlmann J, Keating MJ, Weitman S et al (2007) Population pharmacokinetics-pharmacodynamics of alemtuzumab (Campath) in patients with chronic lymphocytic leukaemia and its link to treatment response. Br J Clin Pharmacol 64:278–291

    Article  PubMed  CAS  Google Scholar 

  • Ng CM, Bruno R, Combs D, Davies B (2005a) Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol 45:792–801

    Article  PubMed  CAS  Google Scholar 

  • Ng CM, Joshi A, Dedrick RL, Garovoy MR, Bauer RJ (2005b) Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res 22:1088–1100

    Article  PubMed  CAS  Google Scholar 

  • Ng CM, Bai S, Takimoto CH, Tang MT, Tolcher AW (2010) Mechanism-based receptor-binding model to describe the pharmacokinetic and pharmacodynamic of an anti-alpha(5)beta (1) integrin monoclonal antibody (volociximab) in cancer patients. Cancer Chemother Pharmacol 65(2):207–217

    Google Scholar 

  • Pillai GC, Mentre F, Steimer JL (2005) Non-linear mixed effects modeling—from methodology and software development to driving implementation in drug development science. J Pharmacokinet Pharmacodyn 32:161–183

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in the nonlinear mixed-effects model. J Comput Graph Stat 4:12–35

    Article  Google Scholar 

  • SAS/STAT 9.2 User’s Guide: The NLMXED procedure (2008) SAS Insititute Inc., Cary

    Google Scholar 

  • Sheiner LB, Rosenberg B, Melmon KL (1972) Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res 5:411–459

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Rosenberg B, Marathe VV (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 5:445–479

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL (1980) Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 8:553–571

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL (1981) Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data. J Pharmacokinet Biopharm 9:635–651

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL (1982) Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci 71:1344–1348

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL (1983) Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 11:303–319

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB (1997) Learning versus confirming in clinical drug development. Clin Pharmacol Ther 61:275–291

    Article  PubMed  CAS  Google Scholar 

  • Slavin RG, Ferioli C, Tannenbaum SJ, Martin C, Blogg M, Lowe PJ (2009) Asthma symptom re-emergence after omalizumab withdrawal correlates well with increasing IgE and decreasing pharmacokinetic concentrations. J Allergy Clin Immunol 123(107–113):e103

    Google Scholar 

  • Steimer JL, Mallet A, Golmard JL, Boisvieux JF (1984) Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metab Rev 15:265–292

    Article  PubMed  CAS  Google Scholar 

  • Tabrizi MA, Bornstein GG, Klakamp SL, Drake A, Knight R, Roskos L (2009) Translational strategies for development of monoclonal antibodies from discovery to the clinic. Drug Discov Today 14:298–305

    Article  PubMed  CAS  Google Scholar 

  • Vugmeyster Y, Tian X, Szklut P, Kasaian M, Xu X (2009) Pharmacokinetic and pharmacodynamic modeling of a humanized anti-IL-13 antibody in naive and Ascaris-challenged cynomolgus monkeys. Pharm Res 26:306–315

    Article  PubMed  CAS  Google Scholar 

  • Wang DD, Zhang S, Zhao H, Men AY, Parivar K (2009) Fixed dosing versus body size-based dosing of monoclonal antibodies in adult clinical trials. J Clin Pharmacol 49:1012–1024

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84:548–558

    Article  PubMed  CAS  Google Scholar 

  • Xiao JJ, Krzyzanski W, Wang YM, Li H, Rose MJ et al (2010) Pharmacokinetics of anti-hepcidin monoclonal antibody Ab 12B9 m and hepcidin in cynomolgus monkeys. AAPS J 12:646–657

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Seitz K, Fasanmade A, Ford J, Williamson P et al (2008) Population pharmacokinetics of infliximab in patients with ankylosing spondylitis. J Clin Pharmacol 48:681–695

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Vu T, Lee H, Hu C, Ling J et al (2009) Population pharmacokinetics of golimumab, an anti-tumor necrosis factor-alpha human monoclonal antibody, in patients with psoriatic arthritis. J Clin Pharmacol 49:1056–1070

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Achmitt S, Grange S (2009) Disease-drug interaction studies of tocilizumab with cytochrome P450 substrates in vitro and in vivo. Clin Pharmacol Ther 85:S59

    Article  Google Scholar 

  • Zhou H (2006) Population-based assessments of clinical drug–drug interactions: qualitative indices or quantitative measures? J Clin Pharmacol 46:1268–1289

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Hu C, Zhu Y, Lu M, Liao S et al (2009) Population-based exposure-efficacy modeling of ustekinumab in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 50:257–267

    PubMed  Google Scholar 

  • Zhu Y, Hu C, Lu M, Liao S, Marini JC et al (2009) Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 49:162–175

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jin, F. (2012). Application of Population Pharmacokinetic-Pharmacodynamic Approaches in the Design of Translational Strategies for Development of Antibody-Based Therapeutics. In: Tabrizi, M., Bornstein, G., Klakamp, S. (eds) Development of Antibody-Based Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5955-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5955-3_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5953-9

  • Online ISBN: 978-1-4419-5955-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics