Skip to main content

Sorghum and Sugarcane Proteomics

  • Chapter
  • First Online:
Genomics of the Saccharinae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

Proteomics is recognised as an important tool for global, translational level, gene expression studies. In comparison to animal studies, plant proteomics lags far behind. This chapter gives a brief review of the current state of plant proteomics. This is followed by a report of the application of in silico bioinformatics approaches in Saccharum spp. (sugarcane) protein subcellular localisation studies. The first comprehensive attempt at Saccharinae proteome work was done on Sorghum bicolor, commonly referred to as sorghum. Data from two-dimensional polyacrylamide gel electrophoresis (2D PAGE)- and mass spectrometric (MS)-based proteomics tools used to analyse global protein accumulation profiles of leaf, sheath and root tissues from two sorghum varieties, AS6 and MN1618, is described. Identified sorghum proteins are grouped into appropriate functional categories and their subcellular localisations are predicted using various bioinformatic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    PubMed  CAS  Google Scholar 

  • Albertin W, Langella O, Joets J, Negroni L, Zivy M, Damerval C, Thiellement H (2009) Comparative proteomics of leaf, stem, and root tissues of synthetic Brassica napus. Proteomics 9:793–799

    PubMed  CAS  Google Scholar 

  • Andersson I, Backlund A (2008) Structure and function of Rubisco. Plant Physiol Biochem 46:275–291

    PubMed  CAS  Google Scholar 

  • Arakaki AK, Ceccarelli EA, Carrillo N (1997) Plant-type ferredoxin-NADP  +  reductases: a basal structural framework and a multiplicity of functions. Fed Am Soc Exp Biol J 11:133–140

    CAS  Google Scholar 

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinforma 18:298–305

    CAS  Google Scholar 

  • Bassi R, Sandona D, Croe R (1997) Novel aspects of chlorophyll a/b-binding proteins. Physiol Plant 100:769–779

    CAS  Google Scholar 

  • Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121–127

    PubMed  CAS  Google Scholar 

  • Boehlein SK, Sewell AK, Cross J, Stewart JD, Hannah LC (2005) Purification and characterization of adenosine diphosphate glucose pyrophosphorylase from maize/potato mosaics. Plant Physiol 138:1552–1562

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  CAS  Google Scholar 

  • Carpentier SC, Coemans B, Podevin N, Laukens K, Witters E, Matsumura H, Terauchi R, Swennen R, Panis B (2008) Functional genomics in a non-model crop: transcriptomics or proteomics? Physiol Plant 133:117–130

    PubMed  CAS  Google Scholar 

  • Carrari F, Coll-Garcia D, Schauer N, Lytovchenko A, Palacios-Rojas N, Balbo I, Rosso M, Fernie AR (2005) Deficiency of a plastidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth. Plant Physiol 137:70–82

    PubMed  CAS  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    PubMed  CAS  Google Scholar 

  • Cokol M, Nair R, Rost B (2000) Finding nuclear localization signals. Eur Mol Biol Organ Rep 1:411–415

    CAS  Google Scholar 

  • Cvetic T, Veljovic-Jovanovic S, Vucinic Z (2008) Characterization of NAD-dependent malate dehydrogenases from spinach leaves. Protoplasma 232:247–253

    PubMed  CAS  Google Scholar 

  • Ding Y, Ma QH (2004) Characterization of a cytosolic malate dehydrogenase cDNA which encodes an isozyme toward oxaloacetate reduction in wheat. Biochimie 86:509–518

    PubMed  CAS  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:3

    Google Scholar 

  • Dunn MJ, Gorg A (2001) Two-dimensional polyacrylamide gel electrophoresis for proteome analysis. In: Pennington SR, Dunn MJ (eds) Proteomics from protein sequence to function. BIOS Scientific Publishers, Oxford, pp 43–63

    Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    PubMed  CAS  Google Scholar 

  • Fechter MH, Griengl H (2004) Hydroxynitrile lyases: biological sources and application as biocatalysts. Food Technol Biotechnol 42:287–294

    CAS  Google Scholar 

  • Fridlyand LE, Backhausen JE, Scheibe R (1998) Flux control of the malate valve in leaf cells. Arch Biochem Biophys 349:290–298

    PubMed  CAS  Google Scholar 

  • Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, van Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16:478–499

    PubMed  CAS  Google Scholar 

  • Ganeteg U, Strand A, Gustafsson P, Jansson S (2001) The properties of the chlorophyll a/b-binding proteins Lhca2 and Lhca3 studied in vivo using antisense inhibition. Plant Physiol 127:150–158

    PubMed  CAS  Google Scholar 

  • Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    PubMed  CAS  Google Scholar 

  • Gorg A, Weiss W (2004) Protein profile comparisons of microorganisms, cells and tissues using 2D gels. In: Speicher DW (ed) Proteome analysis: interpreting the genome. Elsevier, New York, pp 19–73

    Google Scholar 

  • Goward CR, Nicholls DJ (1994) Malate dehydrogenase: a model for structure, evolution, and catalysis. Protein Sci 3:1883–1888

    PubMed  CAS  Google Scholar 

  • Guan HP, Keeling PL (1998) Starch Biosynthesis: understanding the functions and interactions of multiple isoenzymes of starch synthase and branching enzyme. Trends Glycosci Glycotechnol 10:307–319

    CAS  Google Scholar 

  • Gummadova JO, Fletcher GJ, Moolna A, Hanke GT, Hase T, Bowsher CG (2007) Expression of multiple forms of ferredoxin NADP  +  oxidoreductase in wheat leaves. J Exp Bot 58:3971–3985

    PubMed  CAS  Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58:700–754

    PubMed  CAS  Google Scholar 

  • Heazlewood JL, Millar AH (2003) Integrated plant proteomics - putting the green genomes to work. Funct Plant Biol 30:471–482

    CAS  Google Scholar 

  • Heide H, Kalisz HM, Follmann H (2004) The oxygen evolving enhancer protein 1 (OEE) of photosystem II in green algae exhibits thioredoxin activity. J Plant Physiol 161:139–149

    PubMed  CAS  Google Scholar 

  • Heldt HW (1997) Plant biochemistry and molecular biology. Oxford University Press, Oxford

    Google Scholar 

  • Hickel A, Hasslacher M, Griengl H (1996) Hydroxynitrile lyases: functions and properties. Physiol Plant 98:891–898

    CAS  Google Scholar 

  • Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17:721–728

    PubMed  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK (2007) High-resolution two-dimensional gel electrophoresis: a cornerstone for plant proteomics. In: Samaj J, Thelen JJ (eds) Plant proteomics. Springer, Berlin, pp 14–28

    Google Scholar 

  • Ifuku K, Nakatsu T, Shimamoto R, Yamamoto Y, Ishihara S, Kato H, Sato F (2005) Structure and function of the PsbP protein of photosystem II from higher plants. Photosyn Res 84:251–255

    PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Kleczkowski LA (2006) Equilibration of adenylates in the mitochondrial intermembrane space maintains respiration and regulates cytosolic metabolism. J Exp Bot 57:2133–2141

    PubMed  CAS  Google Scholar 

  • International rice genome sequencing project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Jangpromma N, Kitthaisong S, Daduang S, Jaisil P, Thammasirirak S (2007) 18 kDa protein accumulation in sugarcane leaves under drought stress conditions. KMITL Sci Technol J 7:44–54

    Google Scholar 

  • Jorrin JV, Maldonado AM, Castillejo MA (2007) Plant proteome analysis: a 2006 update. Proteomics 7:2947–2962

    PubMed  CAS  Google Scholar 

  • Jorrin-Novo JV, Maldonado AM, Echevarria-Zomeno S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007-2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314

    PubMed  CAS  Google Scholar 

  • Kang IH, Lee JW, Lee JH, Kang CJ, Sim W-S, Kim J-K (1998) Light-independent regulation of chloroplast translational elongation factor Tu gene expression in three types of grass: rice, maize, and barley. J Plant Biol 41:324–329

    CAS  Google Scholar 

  • Kellogg EA, Juliano ND (1997) The structure and function of RuBisCo and their implications for systematic studies. Am J Bot 84:413–428

    PubMed  CAS  Google Scholar 

  • Komatsu S (2006) Plant proteomics databases: their status in 2005. Curr Bioinform 1:33–36

    CAS  Google Scholar 

  • Krishnamurthy L, Serraj R, Hash CT, Dakheel AJ, Reddy BVS (2007) Screening sorghum genotypes for salinity tolerant biomass production. Euphytica 156:15–24

    Google Scholar 

  • Kruger NJ (1997) Carbohydrate synthesis and degradation. In: Dennis DT, Turpin DH, Lefebvre DD, Layzell DB (eds) Plant metabolism, 2nd edn. Addison Wesley Longman, Essex, pp 83–104

    Google Scholar 

  • Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M (2002) Subcellular localization of the yeast proteome. Genes Dev 16:707–719

    PubMed  CAS  Google Scholar 

  • Lange PR, Geserick C, Tischendorf G, Zrenner R (2008) Functions of chloroplastic adenylate kinases in Arabidopsis. Plant Physiol 146:492–504

    PubMed  CAS  Google Scholar 

  • Lauble H, Miehlich B, Forster S, Wajant H, Effenberger F (2002) Crystal structure of hydroxynitrile lyase from Sorghum bicolor in complex with the inhibitor benzoic acid: a novel cyanogenic enzyme. Biochemie 41:12043–12050

    CAS  Google Scholar 

  • Liebler DC (ed) (2004) Proteomics in cancer research. Wiley, New Jersey

    Google Scholar 

  • Lin D, Tabb DL, Yates JR 3rd (2003) Large-scale protein identification using mass spectrometry. Biochim Biophys 1646:1–10

    CAS  Google Scholar 

  • Macdonald FD, Buchanan BB (1997) The reductive pentose phosphate pathway and its regulation. In: Dennis DT, Turpin DH, Lefebvre DD, Layzell DB (eds) Plant metabolism, 2nd edn. Addison Wesley Longman, Essex, pp 299–313

    Google Scholar 

  • Marengo E, Robotti E, Antonucci F, Cecconi D, Campostrini N, Righetti PG (2005) Numerical approaches for quantitative analysis of two-dimensional maps: a review of commercial software and home-made systems. Proteomics 5:654–666

    PubMed  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    PubMed  CAS  Google Scholar 

  • Martin C, Smith AM (1995) Starch biosynthesis. Plant Cell 7:971–985

    PubMed  CAS  Google Scholar 

  • Matthiesen R, Mutenda KE (2007) Introduction to proteomics. Methods Mol Biol 367:1–35

    PubMed  CAS  Google Scholar 

  • McCarty RE (1992) A plant biochemist’s view of H  +  -ATPases and ATP synthesases. J Exp Bot 172:431–441

    CAS  Google Scholar 

  • McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    PubMed  CAS  Google Scholar 

  • Minarik P, Tomaskova N, Kollarova M, Antalik M (2002) Malate dehydrogenases—structure and function. Gen Physiol Biophys 21:257–265

    PubMed  CAS  Google Scholar 

  • Molloy MP (2000) Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem 280:1–10

    PubMed  CAS  Google Scholar 

  • Morant AV, Jorgensen K, Jorgensen C, Paquette SM, Sanchez-Perez R, Moller BL, Bak S (2008) Beta-glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    PubMed  CAS  Google Scholar 

  • Ndimba BK, Chivasa S, Hamilton JM, Simon WJ, Slabas AR (2003) Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3:1047–1059

    PubMed  CAS  Google Scholar 

  • Ndimba BK, Thomas LA (2008) Proteomics in South Africa: current status, challenges and prospects. Biotechnol J 3:1368–1374

    PubMed  CAS  Google Scholar 

  • Ng JH, Ilag LL (2002) Functional proteomics: separating the substance from the hype. Drug Discov Today 7:504–505

    PubMed  Google Scholar 

  • Ngara R (2009) A Proteomic analysis of drought and salt stress responsive proteins of different sorghum varieties. Biotechnology. University of the Western Cape, Cape Town, p 346

    Google Scholar 

  • Ngara R, Rees J, Ndimba BK (2008) Establishment of sorghum cell suspension culture system for proteomics studies. Afr J Biotechnol 7:744–749

    Google Scholar 

  • Nozu Y, Tsugita A, Kamijo K (2006) Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics 6:3665–3670

    PubMed  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    PubMed  CAS  Google Scholar 

  • Patterson SD (2000) Mass spectrometry and proteomics. Physiol Genomics 2:59–65

    PubMed  CAS  Google Scholar 

  • Patterson SD (2004) How much of the proteome do we see with discovery-based proteomics methods and how much do we need to see? Curr Proteomics 1:3–12

    CAS  Google Scholar 

  • Patterson SD, Aebersold R, Goodlett DR (2001) Mass spectrometry-based methods for protein identification and phosphorylation site analysis. In: Pennington SR, Dunn MJ (eds) Proteomics from protein sequence to function. BIOS Scientific Publishers, Oxford, pp 87–130

    Google Scholar 

  • Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323

    PubMed  CAS  Google Scholar 

  • Patton WF (2000) A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 21:1123–1144

    PubMed  CAS  Google Scholar 

  • Podolak E (2010) Sequencing’s new race. Biotechniques 48:105–111

    PubMed  CAS  Google Scholar 

  • Porubleva L, Vander Velden K, Kothari S, Oliver DJ, Chitnis PR (2001) The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis 22:1724–1738

    PubMed  CAS  Google Scholar 

  • Poulton JE (1990) Cyanogenesis in plants. Plant Physiol 94:401–405

    PubMed  CAS  Google Scholar 

  • Preiss J (1997) Modulation of starch synthesis. In: Foyer CH, Quick WP (eds) A molecular approach to primary metabolism in higher plants. Taylor and Francis Publishers, London, pp 81–104

    Google Scholar 

  • Purkarthofer T, Skranc W, Schuster C, Griengl H (2007) Potential and capabilities of hydroxynitrile lyases as biocatalysts in the chemical industry. Appl Microbiol Biotechnol 76:309–320

    PubMed  CAS  Google Scholar 

  • Rabilloud T (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10

    PubMed  CAS  Google Scholar 

  • Raines CA (2003) The Calvin cycle revisited. Photosyn Res 75:1–10

    PubMed  CAS  Google Scholar 

  • Raymond J, Blankenship RE (2008) The origin of the oxygen-evolving complex. Coord Chem Rev 252:377–383

    CAS  Google Scholar 

  • Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7:2976–2996

    PubMed  CAS  Google Scholar 

  • Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T (2000) Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21:3329–3344

    PubMed  CAS  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26

    PubMed  CAS  Google Scholar 

  • Schiltz E, Burger S, Grafmuller R, Deppert WR, Haehnel W, Wagner E (1994) Primary structure of maize chloroplast adenylate kinase. Eur J Biochem 222:949–954

    PubMed  CAS  Google Scholar 

  • Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135:2241–2260

    PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    PubMed  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    PubMed  CAS  Google Scholar 

  • Speicher DW (2004) Overview of proteome analysis. In: Speicher DW (ed) Proteome analysis: interpreting the genome. Elsevier, New York, pp 1–18

    Google Scholar 

  • Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS (2007) Quantum mechanics/molecular mechanics structural models of the oxygen-evolving complex of photosystem II. Curr Opin Struct Biol 17:173–180

    PubMed  CAS  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37:D969–D974

    PubMed  CAS  Google Scholar 

  • Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S (2007) Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev 71:576–599

    PubMed  CAS  Google Scholar 

  • Tamoi M, Nagaoka M, Yabuta Y, Shigeoka S (2005) Carbon metabolism in the Calvin cycle. Plant Biotechnol 22:355–360

    CAS  Google Scholar 

  • Tetlow IJ, Davies EJ, Vardy KA, Bowsher CG, Burrell MM, Emes MJ (2003) Subcellular localization of ADP glucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isoform. J Exp Bot 54:715–725

    PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Thiellement H, Bahrman N, Damerval C, Plomion C, Rossignol M, Santoni V, de Vienne D, Zivy M (1999) Proteomics for genetic and physiological studies in plants. Electrophoresis 20:2013–2026

    PubMed  CAS  Google Scholar 

  • Thomas JC, Ughy B, Lagoutte B, Ajlani G (2006) A second isoform of the ferredoxin:NADP oxidoreductase generated by an in-frame initiation of translation. Proc Natl Acad Sci U S A 103:18368–18373

    PubMed  CAS  Google Scholar 

  • van Wijk KJ (2001) Challenges and prospects of plant proteomics. Plant Physiol 126:501–508

    PubMed  Google Scholar 

  • van Wijk KJ (2004) Plastid proteomics. Plant Physiol Biochem 42:963–977

    PubMed  Google Scholar 

  • Vetter J (2000) Plant cyanogenic glucosides. Toxicon 38:11–36

    PubMed  CAS  Google Scholar 

  • Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MI, Henrique-Silva F, Giglioti EA, Lemos MV, Coutinho LL, Nobrega MP, Carrer H, Franca SC, Bacci Junior M, Goldman MH, Gomes SL, Nunes LR, Camargo LE, Siqueira WJ, Van Sluys MA, Thiemann OH, Kuramae EE, Santelli RV, Marino CL, Targon ML, Ferro JA, Silveira HC, Marini DC, Lemos EG, Monteiro-Vitorello CB, Tambor JH, Carraro DM, Roberto PG, Martins VG, Goldman GH, de Oliveira RC, Truffi D, Colombo CA, Rossi M, de Araujo PG, Sculaccio SA, Angella A, Lima MM, de Rosa Junior VE, Siviero F, Coscrato VE, Machado MA, Grivet L, Di Mauro SM, Nobrega FG, Menck CF, Braga MD, Telles GP, Cara FA, Pedrosa G, Meidanis J, Arruda P (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735

    PubMed  Google Scholar 

  • Vicentini R, Menossi M (2009) The predicted subcellular localisation of the sugarcane proteome. Funct Plant Biol 36:242–250

    CAS  Google Scholar 

  • von Ballmoos C, Dimroth P (2007) Two distinct proton binding sites in the ATP synthase family. Biochemistry 46:11800–11809

    Google Scholar 

  • Wajant H, Mundry K-W (1993) Hydroxynitrile lyase from Sorghum bicolor: a glycoprotein heterotetramer. Plant Sci 89:127–133

    CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    PubMed  CAS  Google Scholar 

  • Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131:1104–1123

    PubMed  Google Scholar 

  • Westermeier R (2005) Electrophoresis in practice, 4th edn. Wiley-VCH, Weinheim

    Google Scholar 

  • White WLB, Arias-Garzon DI, McMahon JM, Sayre RT (1998) Cyanogenesis in cassava- the role of hydroxynitrile lyase in root cyanide production. Plant Physiol 116:1219–1225

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Antoni Slabas and Dr. Bill Simon of Durham University for the MS–MS protein identification data, the National Research Foundation of South Africa (NRF) and the South African Department of Science and Technology (DST) for research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongani Kaiser Ndimba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ndimba, B.K., Ngara, R. (2013). Sorghum and Sugarcane Proteomics. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_7

Download citation

Publish with us

Policies and ethics