Skip to main content

The Gene Pool of Miscanthus Species and Its Improvement

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

For more than a thousand years, people have used Miscanthus from wild stands or managed landscapes, to feed their livestock, roof their homes, make paper, dye possessions, and beautify their gardens. In recent decades there has been a call to develop Miscanthus into a fully domesticated biomass crop for sustainable renewable energy needs. Miscanthus is broadly distributed throughout eastern Asia and the Pacific islands, ranging from southern Siberia to tropical Polynesia, with a current center of diversity in temperate northern latitudes. Adaptation to cold and temperate environments is a distinctive feature of Miscanthus relative to other Saccharinae, facilitating its potential to become an important biomass crop in Europe and the USA. Auto- and allopolyploidy have played a role in the evolution of Miscanthus and polyploidy will likely be of central importance for the development and improvement of this crop. Variation for flowering time, including short-day flower induction, will permit plant breeders to optimize local adaptation and biomass-yield of Miscanthus, just as they have done for maize, sorghum and sugarcane. Germplasm collections that are representative of the genus and publicly available need to be established and characterized. Questions of taxonomy, origins, and evolution need attention from the research community. A multidisciplinary approach that includes population genetics, cytogenetics, molecular genetics, and genomics will be needed to rapidly increase our knowledge of the Miscanthus gene pool, which will facilitate the development of improved cultivars.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acquaah G (2007) Polyploidy in plant breeding. In: Chap 13, Principal of plant genetics and breeding. Blackwell Publishing, Malden, MA, pp 214–230

    Google Scholar 

  • Adati S (1958a) Cytogenetics of Japanese wild forage Miscanthus species. In: Proceedings of the X International Congress of Genetics, McGill University, Montreal, Canada, 20–27 August

    Google Scholar 

  • Adati S (1958b) Studies on the genus Miscanthus with special reference to the Japanese species for breeding purpose as fodder crops. Bull Fac Agric Mie Univ 12:1–112

    Google Scholar 

  • Adati S, Shiotani I (1962) The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull Fac Agric Mie Univ 25:1–24

    Google Scholar 

  • Amalraj VA, Balasundaram N (2006) On the taxonomy of the members of ‘Saccharum complex’. Genet Resour Crop Evol 53:35–41

    Google Scholar 

  • AVRDC (2003) Program III. Collaboration in research and germplasm management. In: Kalb T (ed) AVRDC Report 2002, Taiwan

    Google Scholar 

  • Beale CV, Long SP (1997) Seasonal dynamics of nutrient accumulation and partitioning in the C-4 grass Miscanthus  ×  giganteus and Spartina cynosuroides. Biomass Bioenergy 12:419–428

    Google Scholar 

  • Beale CV, Bint DA, Long SP (1996) Leaf photosynthesis in the C4-grass Miscanthus  ×  giganteus, growing in the cool temperate climate of southern England. J Exp Bot 47:267–273

    CAS  Google Scholar 

  • Beale CV, Morison JI, Long SP (1999) Water use efficiencies of c4 perennial grasses in a temperate climate. Agric Forest Meteorol 96:103–115

    Google Scholar 

  • Burner DM (1997) Chromosome transmission and meiotic behavior in various sugarcane crosses. J Am Soc Sugar Cane Technol 17:38–50

    Google Scholar 

  • Burner DM, Tew TL, Harvey JJ, Belesky DP (2009) Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass Bioenergy 33:610–619

    Google Scholar 

  • Carputo D, Barone A (2005) Ploidy level manipulations in potato through sexual hybridization. Ann Appl Biol 146:71–79

    Google Scholar 

  • Chen YH (1993) Genetics and breeding studies on Saccharum-Miscanthus nobilization. Dissertation, National Taiwan University

    Google Scholar 

  • Chen YH, Lo CC (1989) Disease resistance and sugar content in Saccharum-Miscanthus hybrids. Taiwan Sugar 36:9–12

    Google Scholar 

  • Chen SL, Renvoize SA (2005) A new species and a new combination of Miscanthus (Poaceae) from China. Kew Bull 60:605–607

    Google Scholar 

  • Chen YH, Chen C, Lo CC (2000) Extraordinary phenomenon of cell division in Saccharum Miscanthus and their nobilized progenies. Rep Taiwan Sugar Res Inst 170:27–44

    Google Scholar 

  • Chiang YC, Chou CH, Huang S, Chiang TY (2003a) Possible consequences of fungal contamination on the RAPD fingerprinting in Miscanthus (Poaceae). Aust J Bot 51:197–201

    CAS  Google Scholar 

  • Chiang YUC, Schaal BA, Chou CH, Huang S, Chiang TY (2003b) Contrasting selection modes at the ADH1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). Am J Bot 90:561–570

    PubMed  CAS  Google Scholar 

  • Chou CH, Chiang YC, Chiang TY (2000) Genetic variability and phytogeography of Miscanthus sinensis var. condensatus an apomictic grass based on RAPD fingerprints. Can J Bot 78:1262–1268

    CAS  Google Scholar 

  • Chou CH, Chiang TY, Chiang YC (2001) Towards an integrative biology research: a case study on adaptive and evolutionary trends of Miscanthus populations in Taiwan. Weed Biol Manage 1:81–88

    Google Scholar 

  • Christian DG, Haase E (2001) Agronomy of miscanthus. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp 21–45

    Google Scholar 

  • Christophersen E (1935) Flowering plants of Samoa. Bernice P. Bishop Museum Bull 128, Honolulu

    Google Scholar 

  • Clayton WD, Harman KT, Williamson H (2010) GrassBase - the online world grass flora. http://www.kew.org/data/grasses-db.html

  • Clifton-Brown JC, Jones MB (2001) Yield performance of M. ×giganteus during a 10 year field trial in Ireland. Aspects Appl Biol 65:153–160

    Google Scholar 

  • Clifton-Brown JC, Long SP, Jorgensen U (2001a) Miscanthus productivity. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp 46–67

    Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2001b) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Google Scholar 

  • Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509–518

    Google Scholar 

  • Clifton-Brown J, Chiang Y-C, Hodkinson TR (2008) Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 273–294

    Google Scholar 

  • Darke R (1994) A century of grasses. Arnoldia 54:3–11

    Google Scholar 

  • Darke R (2007) The encyclopedia of grasses for livable landscapes. Timber, Portland

    Google Scholar 

  • de Wet JMJ, Gupta SC, Harlan JR, Grassl CO (1976) Cytogenetics of introgression from Saccharum into Sorghum. Crop Sci 16:568–572

    Google Scholar 

  • Deuter M, Abraham J (1998) Genetic resources of Miscanthus and their use in breeding. In: Biomass for energy and industry proceedings of the international conference. 10th European conference and technology exhibition, Wurzburg, Germany, 8–11 June 1998

    Google Scholar 

  • Dohleman FG, Long SP (2009) More productive that maize in the midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115

    PubMed  CAS  Google Scholar 

  • Engler D, Chen J (2009) Transformation and engineered trait modification in miscanthus species. World Intellectual Property Organization

    Google Scholar 

  • Florence J, Lorence DH (1997) Introduction to the flora and vegetation of the Marquesas Islands. Allertonia 7:226–237

    Google Scholar 

  • French BR (2006) Food composition tables for food plants in Papua New Guinea. Tasmania

    Google Scholar 

  • Gartelmann S (2001) Where there’s a spark, there’s green tourism. The Japan Times Online URL. http://search.japantimes.co.jp/cgi-bin/fv20010321a1.html

  • Glyn JL (2004) An introduction to sugarcane. In: Glyn J (ed) Sugarcane, 2nd edn. Blackwell, Ames, pp 1–19

    Google Scholar 

  • Gonzalez B, Hanna W (1984) Morphological and fertility responses in isogenic triploid and hexaploid pearl millet  ×  napiergrass hybrids. J Hered 75:317–318

    Google Scholar 

  • Grassl CO (1959) Introgression between Saccharum and Miscanthus in New Guinea and the Pacific area. In: Proceedings of the IX international botanical congress, Montreal, Canada, 19–29 August

    Google Scholar 

  • Grassl CO (1974) The origin of sugarcane. Sugarcane Breed Newsl 34:10–18

    Google Scholar 

  • Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus  ×  giganteus Greef et Deu. Angew Bot 67:87–90

    Google Scholar 

  • Greef JM, Deuter M, Jung C, Schondelmaier J (1997) Genetic diverstiy of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Plant Evolut 44:185–195

    Google Scholar 

  • Gupta SC, Harlan JR, de Wet MJ (1978) Cytology and morphology of a tetraploid zorghum population recovered from a Saccharum  ×  Sorghum hybrid. Crop Sci 18:879–883

    Google Scholar 

  • Haberle S (2007) Prehistoric human impact on rainforest biodiversity in highland New Guinea. Philos Trans R Soc B 362:219–228

    Google Scholar 

  • Hanna WW (1990) Transfer of germplasm from the secondary to the primary pool in Pennisetum. Theor Appl Genet 80:200–204

    Google Scholar 

  • Harlan JR (1992) Crops and Man. Am Soc Agron, Madison, WI

    Google Scholar 

  • Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen temperature and water. Biomass Bioenergy 27:21–30

    Google Scholar 

  • Heaton E, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. SP Global Change Biol 14:1–15

    Google Scholar 

  • Hictchcock AS (1971) Manual of grasses of the United States, vol 2, 2nd edn. Dover, New York

    Google Scholar 

  • Himken M, Lammel J, Neukirchen D, Czypionka-Krause U, Olfs HW (1997) Cultivation of Miscanthus under West European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126

    CAS  Google Scholar 

  • Hirayoshi I, Nishikawa K, Kato R (1955) Cytogenetical studies on forage plants. (IV) Self-incompatibility in Miscanthus. Jpn J Breed 5:167–170

    Google Scholar 

  • Hirayoshi I, Nishikawa K, Kubono M, Murase T (1957) Cyto-genetical studies on forage plants (VI) On the chromosome number of Ogi (Miscanthus sacchariflorus). Res Bull Fac Agric Gifu Univ 8:8–13

    Google Scholar 

  • Hirayoshi I, Nishikawa K, Kubono M, Sakaida T (1959) Cyto-genetical studies on forage plants (VII) Chromosome conjugation and fertility of Miscanthus hybrids including M. sinensis M. sinensis var. condensatus and M. tinctorius. Res Bull Fac Agric Gifu Univ 11:86–91

    Google Scholar 

  • Hirayoshi I, Nishikawa K, Hakura A (1960) Cyto-genetical studies on forage plants (VIII) 3x- and 4x-hybrid arisen from the cross Miscanthus sinensis var. condensatus  ×  Miscanthus sacchariflorus. Res Bull Fac Agric Gifu Univ 12:82–88

    Google Scholar 

  • Hodkinson TR, Renvoize S (2001) Nomenclature of Miscanthus  ×  giganteus (Poaceae). Kew Bull 56:759–760

    Google Scholar 

  • Hodkinson TR, Chase MW, Lledó MD, Salamin N, Renvoize SA (2002a) Phylogenetics of Miscanthus Saccharum and related genera (Saccharinae Andropogoneae Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392

    PubMed  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Renvoize SA (2002b) Characterization of a genetic resource collection for Miscanthus (Saccharinae Andropogoneae Poaceae) using AFLP and ISSR PCR. Ann Bot 89:627–636

    PubMed  CAS  Google Scholar 

  • Hodkinson TR, Renvoize SA Chase MW (1997) Systematics of Miscanthus. Aspects of Applied Biology 49:189–198

    PubMed  CAS  Google Scholar 

  • Holme IB, Petersen KK (1996) Callus induction and plant regeneration from different explant types of Miscanthus  ×  ogiformis Honda ‘Giganteus’. Plant Cell Tissue Organ Cult 45:43–52

    Google Scholar 

  • Holme IB, Petersen KK (1996) Callus induction and plant regeneration from different explant types of Miscanthus  ×  ogiformis Honda ‘Giganteus’. Plant Cell Tissue Organ Cult 45:43–52

    Google Scholar 

  • Holme IB, Krogstrup P, Hansen J (1997) Embryogenic callus formation, growth and regeneration in callus and suspension cultures of Miscanthus  ×  ogiformis Honda ‘Giganteus’ as affected by proline. Plant Cell Tissue Organ Cult 50:203–210

    CAS  Google Scholar 

  • Honda M (1939) Nuntia ad Floram Japoniae. XXXVIII. Bot Mag Tokyo 53:144

    Google Scholar 

  • Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush GS, Paterson AH, Li Z-K (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci U S A 100:4050–4054

    PubMed  CAS  Google Scholar 

  • Ibaragi Y, Ohashi H (2004) A taxonomic study of Miscanthus section kariyasua (Graminae). J Jpn Bot 79:4–22

    Google Scholar 

  • Iketani Y, Ida H (2008) Flora of the grassland producing roof material in northern Nagano Prefecture, central Japan. Bull Inst Nat Educ Shiga Heights Shinshu Univ 45:1–6

    Google Scholar 

  • Inthakoun L, Delang CO (2008) Lao Flora A checklist of plants found in Lao PDR with scientific and vernacular names. Lulu, Morrisville, NC

    Google Scholar 

  • Iwanami Y (1969) Temperatures during Miscanthus type grassland fires and their effect on the regeneration of Miscanthus sinensis. Rep Inst Agric Res Tohoku Univ 20:47–88

    Google Scholar 

  • Jensen EF (2009) Flowering time diversity in Miscanthus: a tool for the optimisation of biomass. Comp Biochem Physiol A: Mol Integr Physiol 153(2 (Suppl 1)):S197

    Google Scholar 

  • Jorgensen U, Muhs H-J (2001) Miscanthus breeding and improvement. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp 68–85

    Google Scholar 

  • Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107:1195–1200

    PubMed  CAS  Google Scholar 

  • Kim C, Zhang D, Auckland SA, Rainville LK, Jakob K, Kronmiller B, Sacks EJ, Deuter M, Paterson AH (2012) SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus, and their comparison to sorghum. Theor Appl Genet 124:1325–1338

    Google Scholar 

  • Kim HS, Zhang G, Juvik JA, Widholm JM (2010) Miscanthus × giganteus plant regeneration: Effect of callus types, ages and culture methods on regeneration competence. Global Change Biol Bioenergy 2:192–200

    Google Scholar 

  • Koyama T (1987) Grasses of Japan and its neighboring regions: an identification manual. Kodansha Ltd, Tokyo

    Google Scholar 

  • Lafferty J, Lelley T (1994) Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breed 113:246–249

    Google Scholar 

  • Lee YN (1964a) Taxonomic studies on the genus Miscanthus: relationships among the section subsection and species part 1. J Jpn Bot 39:196–205

    Google Scholar 

  • Lee YN (1964b) Taxonomic studies on the genus Miscanthus: relationships among the section subsection and species part 2 enumeration of species and varieties. J Jpn Bot 39:257–265

    Google Scholar 

  • Lee YN (1964c) Taxonomic studies on the genus Miscanthus: relationships among the section subsection and species part 3 enumeration of species and varieties. J Jpn Bot 39:289–298

    Google Scholar 

  • Lee YN (1993) Manual of the Korean grasses. Ewha Womans University Press, Seoul

    Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    CAS  Google Scholar 

  • Li HW, Loh CS, Lee CL (1948) Cytological studies on sugarcane and its relatives I. Hybrids between Saccharum officinarum Miscanthus japonicus and Saccharum spontaneum. Bot Bull Acad Sin 2:147–160

    Google Scholar 

  • Li HW, Ma TH, Shang KC (1951) Cytological studies of sugarcane and its relatives IX. Further studies of hybrids of intergeneric and interspecific crosses. Rep Taiwan Sugar Exp Stat 7:1–24

    Google Scholar 

  • Li HW, Ma TH, Shang KC (1953) Cytological studies of sugarcane and its relatives X. Exclusive “patroclinous” type in the F1 of sugarcane variety and Miscanthus japonicus Anders. Rep Taiwan Sugar Exp Stat 10:1–6

    Google Scholar 

  • Li HW, Weng TH, Shang KC, Yang PC (1961) Cytological studies of sugarcane and its relatives: XVII. Trigeneric hybrids of Saccharum officinarum L. Sclerostachya fusca A. Camus and Miscanthus japonicus Anderss. Bot Bull Acad Sin 2:1–9

    Google Scholar 

  • Linde-Laursen IB (1993) Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecifichybrid. Hereditas 119:297–300

    Google Scholar 

  • Liu J, Yu X (2004) The exploitation and utilization of Triarrhena lutarioriparia resources. J Zhongkai Agrotechn Coll 7:63–67

    Google Scholar 

  • Lledó MD, Renvoize SA, Chase MW (2001) Miscanthus sinensis and Miscanthus sacchariflorus: a confusing pair of species. Aspects Appl Biol 65:249–254

    Google Scholar 

  • Loh CS, Wu TH (1949) A note on the trihybrids of (Saccharum officinarum  ×  S. robustum)  ×  Miscanthus japonica. Sugarcane Res Ann Prog Rep 3:377–386

    Google Scholar 

  • Luo YW, Yen XC, Zhang GY, Liang GH (1992) Agronomic traits and chromosome behavior of autotetraploid sorghums. Plant Breed 109:46–53

    Google Scholar 

  • Ma X-, Jensen E, Alexandrov N, Troukhan M, Zhang L, Thomas-Jones S, Farrar K, Clifton-Brown J, Donnison I, Swaller T, Flavell R (2012) High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis. PLoS ONE 7:e33821

    Google Scholar 

  • Matumura M (1998a) Autecology of major forage grass (21): basic study for sustainable use. Anim Husbandry 52:717–725

    Google Scholar 

  • Matumura M (1998b) Autecology of major forage grass (20): basic study for sustainable use. Anim Husbandry 52:627–634

    Google Scholar 

  • Matumura M, Yukimura T (1975) Fundamental studies on artificial propagation by seeding useful wild grasses in Japan. VI. Germination behaviors of three native species of genus Miscanthus; M. sacchariflorus, M. sinensis, and M. tinctorius. Res Bull Fac Agric Gifu Univ 38:339–349

    Google Scholar 

  • Matumura M, Hasegawa T, Saijoh Y (1985) Ecological aspects of Miscanthus sinensis var. condensatus M. x sacchariflorus and their 3x–4x-hybrids (1) Process of vegetative spread. Res Bull Fac Agric Gifu Univ 50:423–433

    Google Scholar 

  • Matumura M, Hakumura Y, Saijoh Y (1986) Ecological aspects of Miscanthus sinensis var. condensatus M. × sacchariflorus and their 3x-4x-hybrids (2) Growth behaviour of the current year’s rhizomes. Res Bull Fac Agric Gifu Univ 51:347–362

    Google Scholar 

  • Matumura M, Hasegawa T, Saijoh Y (1987) Ecological aspects of Miscanthus sinensis var. condensatus M. x sacchariflorus and their 3x–4x-hybrids. (3) Aboveground standing crop and response to cutting. Res Bull Fac Agric Gifu Univ 52:315–324

    Google Scholar 

  • Maximowicz M (1859) Primitae Florae Amurensis. Mem Acad Imp Sci St Pitersb 9:331

    Google Scholar 

  • McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JH, Turland NJ (eds) (2006) International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005, Regnum Vegetabile 146

    Google Scholar 

  • Miyabuchi Y, Sugiyama S (2006) A 30,000-year phytolith record of a tephra sequence, east of Aso Caldera, southwestern Japan. Quater Res 45:15–28

    Google Scholar 

  • Muntzing A (1951) Cytogenetic properties and practical value of tetraploid rye. Hereditas 37:17–84

    Google Scholar 

  • Naidu SL, Moose SP, AL-Shoaibi AK, Raines CA, Long SP (2003) Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: Adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132:1688–1697

    Google Scholar 

  • Newman M Ketphanh S Svengsuksa B Thoma P Sengdala K Lamxay V Armstrong K (2007) A Checklist of the vascular plants of Lao PDR. Royal Botanic Garden, Edinburgh, Scotland

    Google Scholar 

  • Nielsen PN (1990) Elefantengrassanbau in Dänemark – Praktikerbericht. Pflug Spaten 3:1–4

    CAS  Google Scholar 

  • Nimura M, Kato J, Horaguchi H, Mii M, Sakai K, Katoh T (2006) Induction of fertile amphidiploids by artificial chromosome-doubling in inter-specific hybrids between Dianthus caryophyllus L. and D. japonicus Thunb. Breed Sci 56:303–310

    Google Scholar 

  • Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura H, Yamaguchi S, Lane Rayburn A, Akashi R, Stewart RJ (2011) Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot 98:154–159

    Google Scholar 

  • Ogura J, Yamamoto S, Ikeka A (2002) The origin of the grassland of Aso region, Kyushu Japan, by microscopic charcoal analysis. Summaries Res AMS Nagoya Univ 13:236–240

    Google Scholar 

  • Paterson AH, Schertz KF, Lin YA, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L). Pers Proc Natl Acad Sci U S A 92:6127–6131

    CAS  Google Scholar 

  • Pyter R, Voigt T, Heaton E, Dohleman F, Long S (2007) Giant Miscanthus: biomass crop for Illinois. In: Janick J, Whipkey A (eds) Issues in new crops and new uses 2007. ASHS, Alexandria, VA

    Google Scholar 

  • Ramdoyal K, Badaloo GH (2002) Prebreeding in sugarcane with an emphasis on the programme of the Mauritius sugar industry research institute. In: Engles JMM, Rao VR, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. IPGRI, Rome

    Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann Rev Ecol Syst 29:467–501

    Google Scholar 

  • Rayburn AL, Crawford J, Rayburn CM, Juvik JA (2009) Genome size of three Miscanthus species. Plant Mol Biol Rep 27:184–188

    CAS  Google Scholar 

  • Reeder J (1948) The Gramineae-Panicoideae of New Guinea. J Arnold Arbor 29:321–392

    Google Scholar 

  • Renvoize SA (2003) The genus Miscanthus. Plantsman 2:207–211

    Google Scholar 

  • Scally L, Wladren S, Hodkinson TR, Jones MB (2001) Morphological and molecular systematics of the genus Miscanthus. Aspects Appl Biol 65:231–237

    Google Scholar 

  • Scurlock JMO (1998) Miscanthus: a review of European experience with a novel energy crop. ORNL/TM-13732. Oak Ridge National Laboratory, Oak Ridge, TN, 26 pp

    Google Scholar 

  • Shouliang C, Renvoize SA (2006) Miscanthus. Flora Chin 22:581–583

    Google Scholar 

  • Stewart JR, Toma YO, Fernandez FG, Nishiwaki A, Yamada T, Bollero GN (2009) The ecology and agronomy of Miscanthus sinensis a species important to bioenergy crop development in its native range in Japan: a review. GCB Bioenergy 1:126–153

    Google Scholar 

  • Sun Q (2009) Primary taxonomic study of Miscanthus Andersson s.l. (Poaceae) from China and Japan. Dissertation Institute of Botany, the Chinese Academy of Sciences

    Google Scholar 

  • Sun Q, Lin Q, Yi ZL, Yang ZR, Zhou F (2010) A taxonomic revision of Miscanthus Andersson s.l. (Poaceae) from China. Bot J Linn Soc 164:178–220

    Google Scholar 

  • Swaminathan K, Alabady MS, Varala K, De Paoli E, Ho I, Rokhsar DS, Arumuganathan AK, Ming R, Green PJ, Meyers BC, Moose SP, Hudson ME (2010) Genomic and small RNA sequencing of Miscanthus  ×  giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol 11:R12

    PubMed  Google Scholar 

  • Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R, Hudson M, Juvik JA, Rokhsar DS, Moose SP (2012) A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics 13:142–159

    PubMed  Google Scholar 

  • Taliaferro CM, Vogel KP, Bouton JH, McLaughlin SB, Tuskan GA (1999) Reproductive characteristics and breeding improvement potential of switchgrass. In: Biomass, a growth opportunity in green energy and value-added products, proceedings of the 4th biomass conference of the Americas, 29 August to 2 September

    Google Scholar 

  • Thomas H (1993) Chromosome manipulation and polyploidy. In: Hayward M, Bosemark N, Romagosa I (eds) Plant breeding: principals and prospects. Chapman and Hall, London, pp 79–92

    Google Scholar 

  • Tu S, Luan L, Liu Y, Long W, Kong F, He T, Xu Q, Yan W, Yu M (2007) Production and heterosis analysis of rice autotetraploid hybrids. Crop Sci 47:2356–2363

    Google Scholar 

  • Ueda Y (1994) Systematic studies in the genus Rosa. Technol Bull Fac Hortic Chiba Univ Jpn 48:241–328

    CAS  Google Scholar 

  • Wang D, Portis AR, Moose SP, Long SP (2008) Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus  ×  giganteus. Plant Physiol 148:557–567

    PubMed  CAS  Google Scholar 

  • Wang X, Yamada T, Kong F-J, Abe Y, Hoshino Y, Sato H, Takamizo T, Kanazawa A, Yamada T (2011) Establishment of an efficient in vitro culture and particle bombardment-mediated transformation systems in Miscanthus sinensis Anderss., a potential bioenergy crop. GCB Bioenergy 3:322–332

    PubMed  CAS  Google Scholar 

  • Watanabe H, Takahashi Y (2006) Dyeing golden by Miscanthus tinctorius. Bull Jpn Assoc Bot Gardens 40:81–87

    Google Scholar 

  • Xi Q (2000) Investigation on the distribution and potential of giant grasses in China – Triarrhena, Miscanthus, Arundo, Phragmites and Neyraudia. Cuvillier, Goettingen

    Google Scholar 

  • Xi Q (2003) Potential of Giant Grass Triarrhena lutarioriparia to grow in cold, dry and saline conditions as energy source. In: Proceedings of the International Conference on Bioenergy Utilization and Environment Protection - 6th LAMNET Project Workshop, 24–26 September, Dalian, China

    Google Scholar 

  • Xiao FH, Tai PYP (1994) Antheral transformation into stigma in interspecific and intergeneric hybrids of Saccharum. J Am Soc Sugar Cane Technol 14:33–39

    Google Scholar 

  • Yi ZL, Zhou PH, Chu CC, Li X, Tian WZ, Wang L, Cao SY, Tang ZS (2001) Establishment of genetic transformation system for Miscanthus sacchariflorus and obtained of its transgenic plant. Gaojishu Tongxin/High Technology Letters 11(4):20

    Google Scholar 

  • Yoshida M, Liu Y, Uchida S et al (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72:805–810

    PubMed  CAS  Google Scholar 

  • Yu CY, Kim HS, Rayburn AL, Widholm JM, Juvik JA (2009) Chromosome doubling of the bioenergy crop Miscanthus  ×  giganteus. GCB Bioenergy 1:404–412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik J. Sacks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sacks, E.J., Juvik, J.A., Lin, Q., Stewart, J.R., Yamada, T. (2013). The Gene Pool of Miscanthus Species and Its Improvement. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_4

Download citation

Publish with us

Policies and ethics