Skip to main content

Synthesis: Fundamental Insights and Practical Applications from the Saccharinae Clade

  • Chapter
  • First Online:
Genomics of the Saccharinae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

  • 1259 Accesses

Abstract

The Saccharinae clade offers both opportunities to improve the efficiency and sustainability at which we convert solar energy and other resources into food, feed, fiber, and fuel and to gain new insights into the ecology, evolution, and function of plant species, their genomes, and their constituent genes. Singular features of biogeography, productivity, and stress tolerance of key Saccharinae taxa fit particularly well with existing or anticipated needs of agriculture. Sorghum holds particular promise as a botanical model for the clade, albeit with more complex genomes in the clade also offering intriguing opportunities to clarify roles of polyploidy in agricultural productivity and post-polyploidy evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ISRIC (1990) The Global Assessment of Human Induced Soil Degradation (GLASOD) Digital Database from UNEP/GRID-Geneva. Wageningen, The Netherlands

    Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Cantrell RP, Hettel GP (2004) Rice, biofortification, and enhanced nutrition. World Food Prize Symposium, Des Moines, IA

    Google Scholar 

  • Conway G (1997) The doubly green revolution: food for all in the twenty-first century, Cornell University Press, Ithaca NY

    Google Scholar 

  • Cox TS , Glover JD, Van Tassel DL, Cox CM, DeHaan LR (2006) Prospects for developing perennial gain crops. BioScience 56:649–659

    Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg J, Rosenow DT, Peterson GC, Clark LE, Miller FR, Sotomayor RA, Hamburger AJ, Madera Torres P, Quiles Belen A, Woodfin CA (1998) Registration of 40 converted sorghum germplasms. Crop Sci 38:564–565

    Article  Google Scholar 

  • Duncan RR, Moss RB (1987) Comparative yields of ratoon cropped temperately and tropically adapted grain-sorghum hybrids. Crop Sci 27:569–571

    Article  Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies Indica and Japonica genome alignments. Genome Res 14:1812–1819

    Article  PubMed  CAS  Google Scholar 

  • Gantzer CJ, Anderson SH, Thompson AL, Brown JR (1990) Estimating soil erosion after 100 years of cropping on Sanborn Field. J Soil Water Conserv 45:641–644

    Google Scholar 

  • Gaut BS, Clark LG, Wendel JF, Muse SV (1997) Comparisons of the molecular evolutionary process at rbcL and ndhF in the grass family (Poaceae). Mol Biol Evol 14:769–777

    Article  PubMed  CAS  Google Scholar 

  • Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC, Buckler ES, Cox CM, Cox TS, Crews TE, Culman SW, DeHaan LR, Eriksson D, Gill BS, Holland J, Hu F, Hulke BS, Ibrahim AMH, Jackson W, Jones SS, Murray SC, Paterson AH, Ploschuk E, Sacks EJ, Snapp S, Tao D, Van Tassel DL, Wade LJ, Wyse DL, Xu Y (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639

    Article  PubMed  CAS  Google Scholar 

  • Harper J (1977) Plant population biology. Academic, London

    Google Scholar 

  • Harris K, Subudhi PK, Borrell A, Jordan A, Rosenow DT, Nguyen HT, Klein PE, Klein RR, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    Article  PubMed  CAS  Google Scholar 

  • Hash CT, Raj AGB, Lindup S, Sharma A, Beniwal CR, Folkertsma RT, Mahalakshmi V, Zerbini E, Blummel M (2003) Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crop Res 84:79–88

    Article  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    PubMed  CAS  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14:2000–2014

    Article  Google Scholar 

  • Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush GS, Paterson AH, Li ZK (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci U S A 100:4050–4054

    Article  PubMed  CAS  Google Scholar 

  • Jang CS, Kamps TL, Skinner DN, Schulze SR, Vencill W, Paterson AH (2006) Sorghum genes with rhizome-enriched expression: functional classification, genomic organization, putative cis-acting regulatory elements, and relationship to QTLs. Plant Physiol 142:1148–1159

    Article  PubMed  CAS  Google Scholar 

  • Jang CS, Kamps TL, Tang H, Bowers JE, Lemke C, Paterson AH (2008) Evolutionary fate of rhizome-specific genes in a non-rhizomatous Sorghum genotype. Heredity 102:266–273

    Article  PubMed  Google Scholar 

  • Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda P, D’Hont A (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585

    Article  PubMed  CAS  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • McWhorter CG (1971) Introduction and spread of Johnsongrass in the United States. Weed Sci 19:496

    Google Scholar 

  • Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Morrell PL, Williams-Coplin D, Bowers JE, Chandler JM, Paterson AH (2005) Crop-to-weed introgression has impacted allelic composition of johnsongrass populations with and without recent exposure to cultivated sorghum. Mol Ecol 14:2143–2154

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Lyons E, Maher C, Narechania A, Penning B, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein PE, Kresovich S, McCann MC, Ming R, Peterson DG, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995a) The weediness of wild plants—molecular analysis of genes influencing dispersal and persistence of Johnsongrass, Sorghum halepense (L) Pers. Proc Natl Acad Sci U S A 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995b) The weediness of wild plants—molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum-halepense (L) Pers. Proc Natl Acad Sci U S A 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, Saffouri R, Blair R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Rosenow DT, Clark LE (1987) Utilization of exotic germplasm in breeding for yield stability. Fifteenth biennial grain sorghum research and utilization conference, pp 49–56

    Google Scholar 

  • Rosenow DT, Dahlberg J, Stephens JC, Miller FR, Barnes DK, Peterson GC, Johnson JW, Schertz KF (1997a) Registration of 63 converted sorghum germplasm lines from the sorghum conversion program. Crop Sci 37:1399–1400

    Article  Google Scholar 

  • Rosenow DT, Dahlberg JA, Peterson GC, Clark LE, Miller FR, Sotomayor RA, Hamburger AJ, Madera Torres P, Quiles Belen A, Woodfin CA (1997b) Registration of fifty converted sorghums from the sorghum conversion program. Crop Sci 37:1397–1398

    Article  Google Scholar 

  • Rout M, Chrzanowski T (2009) The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil 315:163–172

    Article  CAS  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726

    Article  PubMed  CAS  Google Scholar 

  • Serageldin I (2004) Speculations on the future of water and food security. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Sobral BWS, Braga DPV, Lahood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb subtribe of the Andropogoneae Dumort tribe. Theor Appl Genet 87:843–853

    Article  CAS  Google Scholar 

  • Spangler R, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281

    Article  Google Scholar 

  • Stephens J, Miller F, Rosenow D (1967) Conversion of alien sorghums to early combine genotypes. Crop Sci 7:396

    Article  Google Scholar 

  • Subudhi PK, Nguyen HT (2000) Linkage group alignment of sorghum RFLP maps using a RIL mapping population. Genome 43:240–249

    Article  PubMed  CAS  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004a) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Swigonova Z, Lai JS, Ma JX, Ramakrishna W, Llaca M, Bennetzen JL, Messing J (2004b) On the tetraploid origin of the maize genome. Comp Funct Genomics 5:281–284

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271

    Article  PubMed  CAS  Google Scholar 

  • Tuberosa R, Phillips RL, Gale MD (2005) In the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna

    Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough P (1998) Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci 38:835–842

    Article  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • UNESCO (2002) Vital water graphics, water use and management. United Nations Education Scientific and Cultural Organization, Paris

    Google Scholar 

  • Xu WW, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Paterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paterson, A.H. (2013). Synthesis: Fundamental Insights and Practical Applications from the Saccharinae Clade. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_23

Download citation

Publish with us

Policies and ethics