Skip to main content

Bringing the Benefits of Sorghum Genomics to Africa

  • Chapter
  • First Online:
Genomics of the Saccharinae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

Sorghum was the first indigenous African crop to have a completed genome sequence. This provides an invaluable tool for understanding sorghum traits genetically and identifying useful molecular markers. The challenge is to extract relevant information to improve the diverse complex traits of sorghum including drought tolerance, disease and pest resistance, and overall yield. The promise of sorghum to improve food security and help lift millions of Africans out of poverty provides a moral imperative for investing in its improvement. Therefore, we must critically and objectively assess all available resources and coordinate our efforts for the benefit of Africans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Africa Harvest Biotech Foundation International (AHBFI) (2007) A global vision with an African focus to fight poor nutrition with nutrient-rich crops. The Africa Biofortified Sorghum Project: Mid-Term Report, December 2007. Nairobi, Kenya; Johannesburg, South Africa; Washington DC, USA, p 40

    Google Scholar 

  • Bennetzen J (2002) The rice genome. Opening the door to comparative plant biology. Science 296:60–63

    Article  PubMed  Google Scholar 

  • Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53:13–25

    Article  PubMed  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A 90:11212–11216

    Article  PubMed  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Haan TG, Zhang L, Tomes DT, Bressan RA, Hasegawa PM (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev Biol Plant 33:92–100

    Google Scholar 

  • Cheung F, Haas BJ, Goldberg SM, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7:272

    Article  PubMed  Google Scholar 

  • Cook D, Rimando AM, Clemente TE, Schroder J, Dayan FE, Nanayakkara NP, Pan Z, Noonan BP, Fishbein M, Abe I, Duke SO, Baerson SR (2010) Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone. Plant Cell 22:867–887

    Article  PubMed  CAS  Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman Scientific and Technical, Harlow, UK

    Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47(S3):S154–S163

    Google Scholar 

  • Ejeta G, Gressel J (2007) Integrating new technologies for Striga control: towards ending the witch-hunt. World Scientific, London

    Book  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2007) Marker-assisted selection—current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome

    Google Scholar 

  • Food and Agriculture Organization of the United Nations/the International Crops Research Institute for the Semi-Arid Tropics (1996) The world sorghum and millet economies: facts, trends and outlook. FAO/ICRISAT, Rome/India

    Google Scholar 

  • Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282:656–659

    Article  PubMed  CAS  Google Scholar 

  • Gebrekidan B (1979) Sorghum genetic resources in Africa. Eth J Agri Sci 1:108–115

    Google Scholar 

  • Gebrekidan B (1987) Sorghum improvement and production in Eastern Africa. In: Menyonga JM, Bezuneh T, Youdeowei A (eds) Food grain production in semi-arid Africa. OAU/STRC-SAFGRAD, Ouagadougou, Burkina Faso, pp 141–154

    Google Scholar 

  • Gebrekidan B (2009) Linking science to product development: focusing on sorghum. Paper presented in the BecA-Syngenta Foundation for Sustainable Agriculture Foundation conference held on April 29, 2009 at the BecA-ILRI Hub, Nairobi, Kenya

    Google Scholar 

  • Gebrekidan B, Gebre-Hiwot B (1981) Sorghum injera preparations and its quality parameters, Proc. of the Intl. Symp. on Sorghum Grain Quality. ICRISAT, Hyderabad, India

    Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, Secundo BS, Narasu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24:513–522

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Grenier C, Ibrahim Y, Haussmann B, Kiambi D, Ejeta G (2007) Marker-assisted selection for Striga resistance in sorghum. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control: towards ending the witch-hunt. World Scientific, London

    Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker-assisted selection as a component of plant breeding. In: Janick J (ed) Plant breeding reviews, vol 33. Wiley, New Jersey, pp 145–205

    Chapter  Google Scholar 

  • Hallauer AR (2007) History, contribution, and future of quantitative genetics in plant breeding: lessons from maize. Crop Sci 47(S3):S4–S19

    Google Scholar 

  • Haussmann BI, Mahalakshmi V, Reddy BV, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    PubMed  CAS  Google Scholar 

  • Heffner EL, Sorrels ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  PubMed  CAS  Google Scholar 

  • Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    Article  PubMed  CAS  Google Scholar 

  • James C (2010) Global status of commercialized Biotech/GM Crops: 2009, ISAAA Brief 41. ISAAA, Ithaca, New York

    Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomic Proteomic 9:166–177

    CAS  Google Scholar 

  • Kelemu S, Mahuku G, Fregene M, Pachico P, Johnson N, Calvert L, Rao I, Buruchara R, Amede T, Kimani P, Kirkby P, Kaaria S, Ampofo K (2003) Harmonizing the agricultural biotechnology debate for the benefit of African farmers. Afr J Biotechnol 2(11):394–416

    Google Scholar 

  • Liang C, Jaiswal P, Hebbard C, Avraham S, Buckler ES, Casstevens T, Hurwitz B, McCouch S, Ni J, Pujar A, Ravenscroft D, Ren L, Spooner W, Tecle I, Thomason J, Tung CW, Wei X, Yap I, Youens-Clark K, Ware D, Stein L (2008) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res 36:D947–D953

    Article  PubMed  CAS  Google Scholar 

  • Mahalakshmi V, Bidinger FR (2002) Evaluation of stay-green sorghum germplasm lines at ICRISAT. Crop Sci 42:965–974

    Article  Google Scholar 

  • Mayor PJ, Bernardo R (2009) Genomewide selection and marker-assisted recurrent selection in double haploid versus F2 populations. Crop Sci 49:1719–1725

    Article  Google Scholar 

  • McBee GG (1984) Relation of senescence, nonsenescence, and kernel maturity to carbohydrate metabolism in sorghum. In: Mughogho LK (ed.) Sorghum root and stalk rots: a critical Review. Proc. Consult. Group Discussion on Research Needs and Strategies for Control of Sorghum Root and Stalk Rot Diseases, Bellagio, Italy. 27 Nov–2 Dec 1983. ICRISAT, Patancheru, India, pp 119–129

    Google Scholar 

  • Morris M, Dreher K, Ribaut J-M, Khairallah M (2003) Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Mol Breed 11:235–247

    Article  Google Scholar 

  • Mugabe J, Ambali A (2006) Africa’s science and technology consolidated plan of action. The NEPAD Office of Science and Technology, Pretoria, South Africa

    Google Scholar 

  • Mughogho LK, Pande S (1984) Charcoal rot of sorghum. In: Mughogho LK (ed) Sorghum root and stalk rots: a critical Review. Proc. Consult. Group discussion on research needs and strategies for control of sorghum root and stalk rot diseases, Bellagio, Italy. 27 Nov–2 Dec 1983. ICRISAT, Patancheru, India, pp 11–24

    Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A 104:16450–16455

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033

    Article  PubMed  CAS  Google Scholar 

  • Pardey PG, Alston JM, Piggott RR (2006) Agricultural R&D in the developing world: too little, too late? International Food Policy Research Institute, Washington, DC, USA

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboobur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Ragot M, Lee M (2007) Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors. In: Guimarães E, Ruane J, Scherf B, Sonnino A, Dargie JD (eds) Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Rosenow DT, Clark LE (1981) Drought tolerance in sorghum. In: Loden HD, Wilkinson D (eds) Proc 36th Annu. Corn and Sorghum Industry Res Conf Chicago, IL 9–11 Dec. 1981. Am. Seed Trade Assoc, Washington, DC, pp 18–31

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  PubMed  CAS  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Till BJ, Comai L, Henikoff S (2007) TILLING and EcoTILLING for crop improvement. In: Varshney RK, Tuberosa R (eds) Genomic assisted crop improvement: genomics approaches and platforms. Springer, Dordrecht, The Netherlands, pp 333–349

    Chapter  Google Scholar 

  • Varshney RK, Hoisington DA, Tyagi AK (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 24:490–499

    Article  PubMed  CAS  Google Scholar 

  • Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144:32–42

    Article  PubMed  CAS  Google Scholar 

  • World Bank (2008) World development report 2008: agriculture for development. The World Bank, Washington, DC

    Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang X, Skinner DJ, Fu Z, Mitchell S, Li Q, Fernandez MG, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, Dellapenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42:322–327

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Segenet Kelemu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kelemu, S., Gebrekidan, B., Harvey, J. (2013). Bringing the Benefits of Sorghum Genomics to Africa. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_22

Download citation

Publish with us

Policies and ethics