Skip to main content

Perennialism and Weediness in the Saccharinae

  • Chapter
  • First Online:
  • 1289 Accesses

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

The apparent contrast in demands for sustainability and productivity in modern agriculture may be reconcilable via the genetic difference in degree between perennialism and weediness. Effective use of genomic tools may soon allow precise metering of the genetic components required to ensure perennial life status, minimize weediness, and maximize crop yields. The Saccharinae includes both model genomic species and leading food, feed, forage, fuel, and industrial crops upon which translational technologies can be evaluated and deployed. In particular, a balance between the high agricultural productivity demanded in order to minimize land requirements and perennial growth habits necessary to ensure sustainable cropping systems is sought.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Blumenthal DM, Jordan NR, Svenson EL (2003) Weed control as a rationale for restoration: the example of tallgrass prairie. Conserv Ecol 7(1):6, http://www.ecologyandsociety.org/vol7/iss1/art6/

    Google Scholar 

  • Brown AHD, Marshall DR (1981) Evolutionary changes accompanying colonization in plants. In: Scudder GG, Reveal JL (eds) “Evolution Today” Proceedings of the second international congress of systematic and evolutionary biology. Hunt Institute for Botanical Documentation, Carnegie-Mellon University, Pittsburgh, PA, pp 351–363

    Google Scholar 

  • Buckley YM, Downey P, Fowler SV, Hill R, Memmot J, Norambuena H, Pitcairn M, Shaw R, Sheppard AW, Winks C, Wittenberg R, Rees M (2003) Are invasives bigger? A global study of seed size variation in two invasive shrubs. Ecology 84:1434–1440

    Article  Google Scholar 

  • Bugg RL (1992) Using cover crops to manage arthropods on truck farms. HortScience 27:741–745

    Google Scholar 

  • Cappelletto P, Mongardini F, Barberi B, Sannibale M, Brizzi M, Pignatelli V (2000) Papermaking pulps from the fibrous fraction of Miscanthus  ×  giganteus. Ind Crops Prod 11(2–3):205–210

    Article  CAS  Google Scholar 

  • Casady AJ, Anderson KL (1952) Hybridization, cytological, and inheritance studies of a sorghum cross—autotetraploid sudangrass  ×  (johnsongrass  ×  4n sudangrass). Agron J 43:189–194

    Article  Google Scholar 

  • Cheplick GP (2010) Limits to local spatial spread in a highly invasive annual grass (Microstegium vimineum). Biol Invasions 12:1759–1771

    Article  Google Scholar 

  • Chiras DD, Reganold JP (2004) Natural resource conservation: management for a sustainable future, 9th edn. Prentice Hall, Upper Saddle River (NJ)

    Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Bonderup-Kjeldsen J, Jørgensen U, Mortensen J, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Article  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  PubMed  CAS  Google Scholar 

  • Culman SW, DuPont ST, Glover JD, Buckley DH, Fick GW, Ferris H, Crews TE (2010) Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA. Agric Ecosyst Environ 137:13–24

    Article  Google Scholar 

  • Daehler CC (1998) The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds. Biol Conserv 84:167–180

    Article  Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breading, vol 11. Elsevier, Amsterdam, Netherlands, pp 7–84

    Google Scholar 

  • Davis JG, Edye LA (1959) Sorghum almum Parodi, a valuable summer growing grass. J Aust Inst Agric Sci 25:117–127

    Google Scholar 

  • Daws MI, Hall J, Flynn S, Pritchard HW (2007) Do invasive species have bigger seeds? Evidence from intra- and inter-specific comparisons. S Afr J Bot 73:138–143

    Article  Google Scholar 

  • De Wet JMJ, Gupta SC, Harlan JR, Grassl CO (1976) Cytogenetics of introgression from Saccharum into Sorghum. Crop Sci 16:568–572

    Article  Google Scholar 

  • Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron J 94:153–171

    Article  Google Scholar 

  • Ehrenfeld JG (1999) A rhizomatous, perennial form of Microstegium vimineum (Trin.) A. Camus in New Jersey. J Torrey Bot Club 126:352–358

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci U S A 97:7043–7050

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand NC, Whitkus R, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proc Natl Acad Sci U S A 93:5090–5093

    Article  PubMed  CAS  Google Scholar 

  • Fairbrothers DE, Gray JR (1972) Microstegium vimineum (Trin.) A. Camus (Gramineae) in the United States. Bull Torrey Bot Club 99:97–100

    Article  Google Scholar 

  • Gantzer CJ, Anderson SH, Thompson AL, Brown JR (1990) Estimating soil erosion after 100 years of cropping on Sanborn Field. J Soil Water Conserv 45:641–644

    Google Scholar 

  • Glover J (2005) The necessity and possibility of perennial grain crops. Renew Agr Food Syst 20:1–4

    Article  Google Scholar 

  • Glover JD, Culman SW, DuPont ST, Broussard W, Young L, Mangan ME, Mail JG, Crews TE, DeHaan LR, Buckley DH, Ferris H, Turner RE, Reynolds HL, Wyse DL (2010) Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agric Ecosyst Environ 137:3–12

    Article  Google Scholar 

  • Grassl CO (1980) Breeding Andropoganeae at the generic level for biomass. Sugarcane Breeders’ Newsletter 43:41–57

    Google Scholar 

  • Gupta SC, DeWet JMJ, Harlan JR (1978) Morphology of Saccharum-Sorghum hybrid derivatives. Am J Bot 65:936–942

    Article  Google Scholar 

  • Hadley HH (1953) Cytological relationships between Sorghum vulgare and Sorghum halapense. Agron J 45:139–143

    Article  Google Scholar 

  • Hadley HH (1958) Chromosome numbers, fertility, and rhizome expression of hybrids between grain sorghum and Johnson grass. Agron J 50:278–282

    Article  Google Scholar 

  • Hadley HH, Mahan JL (1956) The cytogenetic behavior of the progeny from a backcross (Sorghum vulgare  ×  S. halapense  ×  S. vulgare). Agron J 48:102–106

    Article  Google Scholar 

  • Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature, and water. Biomass Bioenergy 27:21–30

    Article  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu, p 609

    Google Scholar 

  • Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds. Natural histories and distribution. Wiley, USA

    Google Scholar 

  • Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush GS, Paterson AH, Li ZK (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci U S A 100:4050–4054

    Article  PubMed  CAS  Google Scholar 

  • Hubbard L, McSteen P, Doebley J, Hake S (2002) Expression patterns and mutant phenotype of teosinte branched1 correlated with growth suppression in maize and teosinte. Genetics 162:1927–1935

    PubMed  CAS  Google Scholar 

  • Jang CS, Kamps TL, Skinner DN, Schulze SR, Vencill WK, Paterson AH (2006) Functional classification, genomic organization putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of Sorghum genes with rhizome-enriched expression. Plant Physiol 142:1148–1159

    Article  PubMed  CAS  Google Scholar 

  • Jang CS, Kamps TL, Tang H, Bowers JE, Lemke C, Paterson AH (2009) Evolutionary fate of rhizome-specific genes in a non-rhizomatous Sorghum genotype. Heredity 102:266–273

    Article  PubMed  CAS  Google Scholar 

  • Jordan NR, Vatovec CM (2003) Agroecological benefits from weeds. In: Inderjit (ed) Weed ecology and management. Kluwer, Dordrecht, NL, pp 137–158

    Google Scholar 

  • Lazarides M, Cowley K, Hohnen P (1997) CSIRO handbook of Australian weeds. CSIRO, Canberra, ACT

    Google Scholar 

  • Mehrhoff LJ (2000) Perennial Microstegium vimineum (Poaceae): an apparent misidentification? J Torrey Bot Soc 127(3):251–254

    Article  Google Scholar 

  • Meyer MH, Tchida C (1999) Miscanthus Anderss. produces viable seed in four USDA hardiness zones. J Environ Hort 17(3):137–140

    Google Scholar 

  • Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Monoghan N (1979) The biology of Johnson grass (Sorghum halapense). Weed Res 19:261–267

    Article  Google Scholar 

  • Moore PH, Nuss KJ (1987) Flowering and flower synchronization. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 273–311

    Google Scholar 

  • Morin N (1995) Vascular plants of the United States. In: LaRoe ET, Farris GS, Puckett CE, Doran PD, Mac MJ (eds) Our living resources: a report to the nation on the distribution, abundance, and health of US plants, animals, and ecosystems. US Department of the Interior, National Biological Service, Washington, DC, USA, pp 200–205

    Google Scholar 

  • Morse LE, Kartesz JT, Kutner LS (1995) Native vascular plants. In: LaRoe ET, Farris GS, Puckett CE, Doran PD, Mac MJ (eds) Our living resources: a report to the nation on the distribution, abundance, and health of US plants, animals, and ecosystems. US Department of the Interior, National Biological Service, Washington, DC, USA, pp 205–209

    Google Scholar 

  • Ogura S, Kosako T, Hayashi Y, Dohi H (1999) Effect of eating mastication on in-vitro ruminal degradability of Zoysia japonica, Miscanthus sinensis and Dactylis glomerata. Grassland Sci 451:92–94

    Google Scholar 

  • Paterson AH (2008) Genomics of sorghum. Int J Plant Genomics. doi:10.1155/2008/362451

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense(L.) Pers. Proc Natl Acad Sci U S A 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Paustian K, Bergstrom L, Jansson P, Johnson H (1990) Ecosystem dynamics. Ecol Bull 40:153–180

    Google Scholar 

  • Piper JK, Kulakow PA (1994) Seed yield and biomass allocation in Sorghum bicolor and F1 and backcross generations of S. bicolor  ×  S. halepense hybrids. Can J Bot 72:468–474

    Article  Google Scholar 

  • Pursglove JW (1972) Tropical crops: monocotyledons. Longman Scientific and Technical, New York

    Google Scholar 

  • Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D, Mack RN (2006) Adding Biofuels to the invasive species fire? Science Magazine 313:1742

    CAS  Google Scholar 

  • Randall RP (2002) A global compendium of weeds. R.G. & F.J Richardson, Meredith, Victoria

    Google Scholar 

  • Randall GW, Huggins DR, Russelle MP, Fuchs DJ, Nelson WW, Anderson JL (1997) Nitrate losses through subsurface tile drainage in CRP, alfalfa, and row crop systems. J Environ Qual 26:1240–1247

    Article  CAS  Google Scholar 

  • Rao PS (1980) Fertility, seed storage and seed viability in sugarcane. In: Proceedings of the International Society of Sugar Cane Technologists, pp 1236–1240

    Google Scholar 

  • Redman DE (1995) Distribution and habitat types for Nepal Microstegium [Microstegium vimineum (Trin.) Camus] in Maryland and the District of Columbia. Castanea 60:270–275

    Google Scholar 

  • Robertson GP, Paul E, Harwood R (2000) Greenhouse gases in intensiveagriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925

    Article  PubMed  CAS  Google Scholar 

  • Scordia D, Cosentino SL, Jeffries TW (2010) Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. Bioresour Technol 101(14):5358–5365

    Article  PubMed  CAS  Google Scholar 

  • Sobral BWS, Braga DPV, LaHodd ES, Klein P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutation in the Saccharinae Griseb. subtribe of Andropogoneae Dumort. tribe. Theor Appl Genet 87:843–853

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from a combined data set of 18S rDNA, rbcL and atpB sequences. Bot J Linn Soc 133:381–461

    Article  CAS  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253

    Google Scholar 

  • Sturz AV, Matheson BG, Arsenault W, Kimpinski J, Christie BR (2001) Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Can J Microbiol 47:1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Swift MJ, Anderson JM (1993) Biodiversity and ecosystem function in agricultural systems. In: Schultz ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin, Germany

    Google Scholar 

  • Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004a) Close split of sorghum and maize genome progenitors. Genome Res 14(10):1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Swigonova Z, Lai JS, Ma JX, Ramakrishna W, Llaca M, Bennetzen JL, Messing J (2004b) On the tetraploid origin of the maize genome. Comp Funct Genomics 5:281–284

    Article  PubMed  CAS  Google Scholar 

  • Thomas H, Thomas HM, Ougham H (2000) Annuality, perenniality and cell death. J Exp Bot 51:1781–1788

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  PubMed  CAS  Google Scholar 

  • USDA (2010) Saccharum spontaneum L. Wild Sugarcane. USDA, http://plants.usda.gov/java/profile?symbol=SASP

  • Warwick SI, Thompson BK, Black LD (1984) Population variation in Sorghum halepense, Johnson grass, at the northern limits of its range. Can J Bot 62:1781–1790

    Article  Google Scholar 

  • Warwick SI, Phillips D, Andrews C (1986) Rhizome depth: the critical factor in winter survival of Sorghum halepense (L.) Pers. (Johnson grass). Weed Res 26:381–387

    Article  Google Scholar 

  • Weber E (2003) Invasive plant species of the world—a reference guide to environmental weeds. CABI Publishing, Oxfordshire, UK

    Google Scholar 

  • Westerbergh A, Doebley J (2004) Quantitative trait loci controlling phenotypes related to the perennial versus annual habit in wild relatives of maize. Theor Appl Genet 109:1544–1553

    Article  PubMed  CAS  Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666

    Article  Google Scholar 

  • Yudelman M, Ratta A, Nygaard D (1998) Pest management and food production looking for the future. Food, Agriculture, and the Environment Discussion Paper 25. International Food Policy Research Institute (IFPRI). Washington, DC

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell W. Jessup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jessup, R.W. (2013). Perennialism and Weediness in the Saccharinae. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_21

Download citation

Publish with us

Policies and ethics