Skip to main content

Sorghum Transformation: Overview and Utility

  • Chapter
  • First Online:
Genomics of the Saccharinae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

Over the past decade genomics resources available for sorghum have rapidly expanded (Paterson Int J Plant Genomics 2008:6, 2008), these resources, coupled with the recent completion of the genome sequence which is relatively small in size (730 Mb) (Paterson et al. Nature 457:551–556, 2009) makes sorghum a rather attractive species to study. Moreover, the USDA germplasm system maintains 42,614 accessions, of which more than 800 exotic landraces have been converted to day length-insensitive lines to facilitate their use in breeding programs. In addition, a set of EMS mutation stocks developed by the USDA Plant Stress and Germplasm Development Unit in Lubbock, TX (Xin et al. Bioenerg Res 2:10–16, 2009) will be a valuable resource for functional genomics studies in sorghum. However, in order to be a robust system for study a suite of functional genomics tools are necessary to complement these other resources to aid in down-stream hypothesis testing. A key functional genomics tool is the ability to modulate gene expression through the introduction of transgenic genetic elements. This is exemplified by recent work (Cook et al. Plant Cell 22:867–887, 2010) in which RNAi experiments were employed to specifically reduced expression of two alkylresorcinol synthases to demonstrate their role in the synthesis of the allelopathic molecule sorgoleone. In addition to its value as a functional genomics tool, plant transformation offers a route to broaden access to novel input and output traits for sorghum breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas HK, Accinelli C, Zablotowicz RM, Abel CA, Bruns HA, Dong Y, Shier WT (2008) Dynamics of mycotoxin and Aspergillus flavus levels in aging Bt and non-Bt corn residues under Mississippi no-till conditions. J Agric Food Chem 56:7578–7585

    Article  PubMed  CAS  Google Scholar 

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  PubMed  CAS  Google Scholar 

  • Aly R (2007) Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cell Dev Biol 43:304–317

    Google Scholar 

  • Aly R, Cholakh H, Joel DM, Leibman D, Steinitz B, Zelcer A, Naglis A, Yarden O, Gal-On A (2009) Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnol J 7:487–498

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CL, Parker GB, Pershing JC, Brown SM, Sanders PR, Duncan DR, Stone T, Dean DA, DeBoer DL, Hart J, Howe AR, Morrish FM, Pajeau ME, Peterson WL, Reich BJ, Rodriguez R, Santino CG, Sato SJ, Schuler W, Sims SR, Stehling S, Tarochione LJ, Fromm ME (1995) Field evaluation of european corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci 35:550–557

    Article  Google Scholar 

  • Bakan B, Melcion D, Richard-Molard D, Cahagnier B (2002) Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J Agric Food Chem 50:728–731

    Article  PubMed  CAS  Google Scholar 

  • Barry BD, Darrah LL, Huckla DL, Antonio AQ, Smith GS, O’Day MH (2000) Performance of transgenic corn hybrids in Missouri for insect control and yield. J Econ Entomol 93:993–999

    Article  PubMed  CAS  Google Scholar 

  • Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Eichholtz D, Fincher K, Hallas L (1992) Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. Biosynthesis and molecular recognition of amino acids in plants. 139–145

    Google Scholar 

  • Battraw M, Hall TC (1991) Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase-II and ß-glucuronidase genes. Theor Appl Genet 82:161–168

    Article  CAS  Google Scholar 

  • Beachy RN, Fraley RT, Rogers SG (2003) Protection of plants against viral infection. Monsanto Technology LLC/Washington University, United States Patent No. 6,608,421

    Google Scholar 

  • Belanger FC, Kriz AL (1991) Molecular basis for allelic polymorphism of the maize Globulin-1 gene. Genetics 129:863–872

    PubMed  CAS  Google Scholar 

  • Brauer EK, Shelp BJ (2010) Nitrogen use efficiency: re-consideration of the bioengineering approach. Botany 88:103–109

    Article  CAS  Google Scholar 

  • Cai H, Zhou Y, Xiao J, Li X, Zhang Q, Lian X (2009) Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep 28:527–537

    Article  PubMed  CAS  Google Scholar 

  • Cai T, Daly B, Butler L (1987) Callus induction and plant regeneration from shoot portions of mature embryos of high tannin sorghum. Plant Cell Tiss Org Cult 9:245–252

    Article  Google Scholar 

  • Cai T, Pierce DA, Tagliani LA, Zhao Z-Y (2002) Agrobacterium mediated transformation of sorghum. Pioneer Hi-Bred International, Inc, United States Patent No. 6,396,298

    Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A 90:11212–11216

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo MG, Yafuso C, Schmidt CW, Huang C-Y, Rahman M, Olson C, Ellers-Kirk C, Orr BJ, Matsh SE, Antilla L, Dutilleul P, Carriére Y (2006) Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci U S A 103:7571–7576

    Article  PubMed  CAS  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Coleman CE, Larkins BA (1999) The prolamins of maize. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic Publishers, Dordrecht, pp 109–139

    Chapter  Google Scholar 

  • Coleman CE, Lopes MA, Gillikin JW, Boston RS, Larkins BA (1995) A defective signal peptide in the maize high-lysine mutant floury 2. Proc Natl Acad Sci U S A 92:6828–6831

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Rimando AM, Clemente TE, Schroder J, Dayan FE, Nanayakkara D, Pan Z, Noonan BP, Fishbein M, Abe I, Duke SO, Baerson SR (2010) Alkylresorcinol. synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone soroleone. Plant Cell 22:867–887

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Daley M, Knauf VC, Summerfelt KR, Turner JC (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17:489–496

    Article  CAS  Google Scholar 

  • Duodu KG, Taylor JRN, Belton PS, Hamaker BR (2003) Factors affecting sorghum protein digestibility. J Cereal Sci 38:117–131

    Article  CAS  Google Scholar 

  • Ejeta G (2007) Breeding for striga resistance in sorghum: exploitation of an intricate host-parasite biology. Crop Sci 47(suppl 3):216–227

    Google Scholar 

  • Elkonin LA, Pakhomova NV (2000) Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum. Plant Cell Tiss Org Cult 61:115–123

    Article  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    Article  PubMed  CAS  Google Scholar 

  • Gao C, Long D, Lenk I, Nielsen KK (2008) Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment. Plant Cell Rep 27:1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J 3:591–599

    Article  PubMed  CAS  Google Scholar 

  • Ghali R, Ghorbel H, Hedilli A (2009) Fumonisin determination in Tunisian foods and feeds. ELISA and HPLC methods and comparison. J Agric Food Chem 57:3955–3960

    Article  PubMed  CAS  Google Scholar 

  • Gilbert RA, Gallo-Meagher M, Comstock JC, Miller JD, Jain M, Abouzid A (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosic virus strain E. Crop Sci 45:2060–2067

    Article  Google Scholar 

  • Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor GJ, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262

    Article  CAS  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  PubMed  CAS  Google Scholar 

  • Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccaromyces cerevisiae. Gene 26:179–188

    Article  Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan H-Q, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444

    Article  PubMed  CAS  Google Scholar 

  • Hammond BG, Campbell KW, Pilcher CD, Degooyer TA, Robinson AE, McMillen BL, Spangler SM, Riordan SG, Rice LG, Richard JL (2004) Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000–2002. J Agric Food Chem 52:1390–1397

    Article  PubMed  CAS  Google Scholar 

  • Hartings H, Maddaloni M, Lazzaroni N, Di Fonzo N, Motto M, Salamini F, Thompson R (1989) The O2 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators. EMBO J 8:2795–2801

    PubMed  CAS  Google Scholar 

  • Hennigh DS, Al-Khatib K, Currie RS, Tuinstra MR, Geier PW, Stahlman PW, Claassen MM (2010) Weed control with selected herbicides in acetolactate synthase-resistant sorghum. Crop Protect 29:879–883

    Article  CAS  Google Scholar 

  • Henzell RG, Persley DM, Greber RS, Fletcher DS, Van Slobbe L (1982) Development of grain sorghum lines with resistance to sugarcane mosaic and other sorghum diseases. Plant Dis 66:900–901

    Article  Google Scholar 

  • Hokanson KE, Ellstrand NC, Ouedraogo JT, Olweny PA, Schaal PA, Raybould AF (2010) Biofortified sorghum in Africa: using problem formulation to inform risk assessment. Nat Biotechnol 28:900–903

    Article  PubMed  CAS  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Adams WR, Zhou Q, Malloy KP, Voyles DA, Anthony J, Kriz AL, Luethy MH (2004) Improving nutritional quality of maize proteins by expressing sense and antisense zein genes. J Agric Food Chem 52:1958–1964

    Article  PubMed  CAS  Google Scholar 

  • Jacob SS, Veluthambi K (2002) Generation of selection marker-free transgenic plants by cotransformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Sci 163:801–806

    Article  CAS  Google Scholar 

  • Jensen SG, Giorda LM (2002) Virus diseases of sorghum and millet in the Americas and Australia. In: Leslie JF (ed) Sorghum and millets diseases. Iowa State, Ames, IA, pp 403–410

    Google Scholar 

  • Jeoung JM, Krishnaveni S, Muthukrishnan S, Trick HN, Liang GH (2002) Optimization of sorghum transformation parameters using genes for green fluorescent protein and ß-glucuronidase as visual markers. Hereditas 137:20–28

    Article  PubMed  CAS  Google Scholar 

  • Joersbo M, Okkels FT (1996) A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep 16:219–221

    Article  CAS  Google Scholar 

  • Jogeswar G, Ranadheer D, Anjaniah V, Kishor PBK (2007) High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature explants. In Vitro Cell Dev Biol-Plant 43:159–166

    Google Scholar 

  • Kaeppler HF, Pedersen JF (1996) Media effects on phenotype of callus cultures initiated from photoperiod-insensitive, elite inbred sorghum lines. Maydica 41:83–89

    Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Nataraja K, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt gene. Proc Natl Acad Sci U S A 104:15270–15275

    Article  PubMed  CAS  Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Mol Breed 14:239–252

    Article  CAS  Google Scholar 

  • Khanna HK, Paul J-Y, Harding RM, Dickman MB, Dale JL (2007) Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. Mol Plant Microb Interact 20:1048–1054

    Article  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Pandey KC (2008) Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. J Environ Biol 29:641–653

    PubMed  CAS  Google Scholar 

  • Maier-Greiner UH, Obermaier-Skrobranek BM, Estermaier LM, Kammerloher W, Freund C, Wulfing C, Burkert UI, Matern DH, Breuer M, Eulitz M et al (1991) Isolation and properties of a nitrile hydratase from the soil fungus Myrothecium verrucaria that is highly specific for the fertilizer cyanamide and cloning of its gene. Proc Natl Acad Sci U S A 88:4260–4264

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A 104:16450–16455

    Article  PubMed  CAS  Google Scholar 

  • Nelson RS, Abel PP, Beachy RN (1987) Lesions and virus accumulation in inoculated transgenic tobaco plants expressing the coat protein gene of tobacco mosaic virus. Virology 158:126–132

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T-V, Thu TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tiss Org Cult 91:155–164

    Article  CAS  Google Scholar 

  • Oria MP, Hamaker BR, Axtell JD, Huang C-P (2000) A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc Natl Acad Sci U S A 97:5065–5070

    Article  PubMed  CAS  Google Scholar 

  • Palanichelvam K, Oger P, Clough SJ, Cha C, Bent AF, Farrand SK (2000) A second T-region of the soybean-supervirulent chrysopine-type Ti plasmid pTiChry5, and construction of a fully disarmed vir helper plasmid. Mol Plant Microb Interact 13:1081–1091

    Article  CAS  Google Scholar 

  • Paterson AH (2008) Genomics of sorghum. Int J Plant Genomics 2008:6

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapmann J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Ginggle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Pedersen JF, Marx DB, Funnell DL (2003) Use of A3 cytoplasm to reduce risk of gene flow through sorghum pollen. Crop Sci 43:1506–1509

    Article  Google Scholar 

  • Pola S, Mani NS, Ramana T (2008) Plant tissue culture studies in Sorghum bicolor: immature embryo explants as the source material. Int J Plant Prod 2:1–14

    Google Scholar 

  • Pola SR, Mani NS (2006) Somatic embryogenesis and plantlet regeneration in Sorghum bicolor (L.) Moench, from leaf explants. J Cell Mol Biol 5:99–107

    Google Scholar 

  • Prins M (2003) Broad virus resistance in transgenic plants. Trends Biotechnol 21:373–375

    Article  PubMed  CAS  Google Scholar 

  • Reddy BN, Raghavender C (2008) Outbreaks of Fusarial-toxicoses in India. Cereal Res Commun 36(Suppl B):321–325

    Article  CAS  Google Scholar 

  • Reddy KRN, Raghavender CR, Reddy BN, Salleh B (2010) Biological control of Aspergillus flavus growth and subsequent aflatoxin B1 production in sorghum grains. Afr J Biotechnol 9:4247–4250

    CAS  Google Scholar 

  • Sahoo L, Schmidt JJ, Pedersen JF, Lee DJ, Lindquist JL (2010) Growth and fitness components of wild X cultivated Sorghum bicolor (Poacheae) hybrids in Nebraska. Am J Bot 97:1610–1617

    Article  PubMed  Google Scholar 

  • Sato S, Clemente T, Dweikat I (2004a) Identification of an elite sorghum genotype with high in vitro performance capacity. In Vitro Cell Dev Biol 40:57–60

    Article  Google Scholar 

  • Sato S, Xing A, Ye X, Schweiger B, Kinney A, Graef G, Clemente T (2004b) Production of γ-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop Sci 44:646–652

    Article  CAS  Google Scholar 

  • Sharma HC, Ortiz R (2000) Transgenics, pest management, and the environment. Curr Sci 79:421–437

    CAS  Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732

    Article  PubMed  CAS  Google Scholar 

  • Stark DM, Beachy RN (1989) Protection against potyvirus infection in transgenic plants: evidence for broad spectrum resistance. Nat Biotechnol 7:1257–1262

    Google Scholar 

  • Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c1[w]. Plant Physiol 139:1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Tesso T, Ejeta G, Chandrashekar A, Huang C-P, Tandjung A, Lewamy M, Axtell JD, Hamaker BR (2006) A novel modified endosperm texture in a mutant high-protein digestibility/high-lysine grain sorghum (Sorghum bicolor (L.) Moench). Cereal Chem 83:194–201

    Article  CAS  Google Scholar 

  • Tesso T, Hamaker BR, Ejeta G (2008a) Sorghum protein digestibility is affected by dosage of mutant alleles in endosperm cells. Plant Breed 127:579–586

    Article  Google Scholar 

  • Tesso T, Kapran I, Grenier C, Snow AA, Sweeney P, Pedersen JF, Marx DB, Bothma G, Ejeta G (2008b) The potential for crop-to-wild gene flow in sorghum in Ethiopia and Niger: a geographic survey. Crop Sci 48:1425–1431

    Article  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO 6:2519–2523

    CAS  Google Scholar 

  • Torres MJ, Tomilov AA, Tomilova N, Reagan RL, Yoder JI (2005) Psroph, a parasitic plant EST database enriched for parasite associated transcripts. BMC Plant Biol 5:24–33

    Article  PubMed  Google Scholar 

  • Tuinstra MR, Soumana S, Al-Khatib K, Kapran I, Toure A, van Ast A, Bastiaans L, Ochanda NW, Salami I, Kayentao M, Dembele S (2009) Efficacy of herbicide seed treatments for controlling Striga infestation of sorghum. Crop Sci 49:923–929

    Article  CAS  Google Scholar 

  • Wei H, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Messing J (2010) RNA interference-mediated change in protein body morphology and seed opacity through loss of different zein proteins. Plant Physiol 153:337–347

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Wang M-L, Burow G, Burke J (2009) An induced sorghum mutant population suitable for bioenergy research. Bioenerg Res 2:10–16

    Article  Google Scholar 

  • Xing A, Zhang Z, Sato S, Staswick P, Clemente T (2000) The use of the two T-DNA binary system to derive marker-free transgenic soybeans. In Vitro Cell Dev Biol 36:456–463

    CAS  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci U S A 101:7833–7838

    Article  PubMed  CAS  Google Scholar 

  • Yoder JI, Scholes JD (2010) Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr Opin Plant Biol 13:478–484

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z-Y, Glassman K, Sewalt V, Wang N, Miller M, Chang S, Thompson T, Catron S, Wu E, Bidney D, Kedebe Y, Jung R (2003) Nutritionally improved transgenic sorghum. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zhao Z-Y, Gu W, Cai T, Tagliani LA, Hondred D, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop News Lett 72:1–4

    Google Scholar 

  • Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejinder Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, T., Howe, A., Sato, S., Dweikat, I., Clemente, T. (2013). Sorghum Transformation: Overview and Utility. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_10

Download citation

Publish with us

Policies and ethics