Skip to main content

Optimization Theory

  • Chapter
  • First Online:
Numerical Analysis for Statisticians

Part of the book series: Statistics and Computing ((SCO))

  • 8392 Accesses

Abstract

This chapter summarizes a handful of basic principles that permit the exact solution of many optimization problems. Misled by the beautiful examples of elementary calculus, students are disappointed when they cannot solve optimization problems analytically. More experienced scholars know that exact solutions are the exception rather than the rule. However, they cherish these exceptions because they form the basis of most iteration schemes in optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur D, Vassilvitskii S (2007): k-means++: the advantages of careful seeding. 2007 Symposium on Discrete Algorithms (SODA)

    Google Scholar 

  2. Beltrami EJ (1970) An Algorithmic Approach to Nonlinear Analysis and Optimization. Academic Press, New York

    MATH  Google Scholar 

  3. Bishop YMM, Feinberg SE, Holland PW (1975) Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  4. Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Brinkhuis J, Tikhomirov V (2005) Optimization: Insights and Applications. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  6. Ciarlet PG (1989) Introduction to Numerical Linear Algebra and Optimization. Cambridge University Press, Cambridge

    Google Scholar 

  7. de Leeuw J (1994) Block relaxation algorithms in statistics. in Information Systems and Data Analysis, Bock HH, Lenski W, Richter MM, Springer, Berlin

    Google Scholar 

  8. de Souza PN, Silva J-N (2001) Berkeley Problems in Mathematics, 2nd ed. Springer, New York

    MATH  Google Scholar 

  9. Everitt BS (1977) The Analysis of Contingency Tables. Chapman & Hall, London

    Google Scholar 

  10. Forsgren A, Gill PE, Wright MH (2002) Interior point methods for nonlinear optimization. SIAM Review 44:523-597

    Article  MathSciNet  Google Scholar 

  11. Gabriel KR, Zamir S (1979) Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21:489-498

    Article  MATH  Google Scholar 

  12. Hestenes MR (1981) Optimization Theory: The Finite Dimensional Case. Robert E Krieger Publishing, Huntington, NY

    Google Scholar 

  13. Kosowsky JJ, Yuille AL (1994) The invisible hand algorithm: solving the assignment problem with statistical physics. Neural Networks 7:477-490

    Article  MATH  Google Scholar 

  14. Ku HH, Kullback S (1974) Log-linear models in contingency table analysis. Biometrics 10:452-458

    Google Scholar 

  15. Kuhn HW, Tucker AW (1951) Nonlinear programming. in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, pp 481-492

    Google Scholar 

  16. Lange, K (2004) Optimization. Springer, New York

    MATH  Google Scholar 

  17. Luenberger DG (1984) Linear and Nonlinear Programming, 2nd ed. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  18. Maher MJ (1982), Modelling association football scores. Statistica Neerlandica 36:109-118

    Article  Google Scholar 

  19. Mangasarian OL, Fromovitz S (1967) The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J Math Anal Appl 17:37-47

    Article  MATH  MathSciNet  Google Scholar 

  20. Mardia KV, Kent JT, Bibby JM (1979) Multivariate Analysis. Academic, New York

    MATH  Google Scholar 

  21. McShane EJ (1973) The Lagrange multiplier rule. Amer Math Monthly 80:922-925

    Article  MATH  MathSciNet  Google Scholar 

  22. Peressini AL, Sullivan FE, Uhl JJ Jr (1988) The Mathematics of Nonlinear Programming. Springer, New York

    MATH  Google Scholar 

  23. Ruszczynski A (2006) Nonlinear Optimization. Princeton University Press. Princeton, NJ

    MATH  Google Scholar 

  24. Sinkhorn R (1967) Diagonal equivalence to matrices with prescribed row and column sums. Amer Math Monthly 74:402-405

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Lange .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Lange, K. (2010). Optimization Theory. In: Numerical Analysis for Statisticians. Statistics and Computing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5945-4_11

Download citation

Publish with us

Policies and ethics