Skip to main content

Use of Auditory Models in Developing Coding Strategies for Cochlear Implants

  • Chapter
  • First Online:
Computational Models of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 35))

Abstract

Auditory models are used at least to some extent in all current designs of cochlear implant (CI) systems. For example, all current designs use a filter bank to mimic in a coarse way the filtering that occurs in the normal auditory periphery. However, the models used are relatively simple and do not include the intricacies of the ­normal processing or the interactions (e.g., feedback loops) among processing steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baumgarte F (1999) A physiological ear model for the emulation of masking. ORL J Otorh­inolaryngol Relat Spec 61:294–304.

    Article  PubMed  CAS  Google Scholar 

  • Bonham BH, Litvak LM (2008) Current focusing and steering: modeling, physiology and ­psychophysics. Hear Res 242:141–153.

    Article  PubMed  Google Scholar 

  • Busby PA, Tong YC, Clark GM (1993) The perception of temporal modulations by cochlear implant patients. J Acoust Soc Am 94:124–131.

    Article  PubMed  CAS  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417.

    Article  PubMed  CAS  Google Scholar 

  • Delgutte B (1996) Physiological models for basic auditory percepts. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (eds), Auditory Computation. New York: Springer, pp. 157–220.

    Chapter  Google Scholar 

  • Deng L, Geisler CD (1987) A composite auditory model for processing speech sounds. J Acoust Soc Am 82:2001–2012.

    Article  PubMed  CAS  Google Scholar 

  • Dorman, MF, Spahr AJ (2006) Speech perception by adults with multichannel cochlear implants. In: Waltzman SB, Roland JT Jr (eds), Cochlear Implants, 2nd ed. New York: Thieme, pp. 193–204.

    Google Scholar 

  • Dorman MF, Gifford RH, Spahr AJ, McKarns SA (2007) The benefits of combining acoustic and electric stimulation for the recognition of speech, voice and melodies. Audiol Neurotol 13:105–112.

    Article  Google Scholar 

  • Favre E, Pelizzone M (1993) Channel interactions in patients using the Ineraid multichannel cochlear implant. Hear Res 66:150–156.

    Article  PubMed  CAS  Google Scholar 

  • Fishman KE, Shannon RV, Slattery WH (1997) Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J Speech Lang Hear Res 40:1201–1215.

    PubMed  CAS  Google Scholar 

  • Friesen LM, Shannon RV, Baskent D, Wang X (2001) Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am 110:1150–1163.

    Article  PubMed  CAS  Google Scholar 

  • Fu Q-J, Nogaki G (2004) Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing. J Assoc Res Otolaryngol 6:19–27.

    Google Scholar 

  • Garnham C, O’Driscol M, Ramsden R, Saeed S (2002) Speech understanding in noise with a Med-El COMBI 40+ cochlear implant using reduced channel sets. Ear Hear 23:540–552.

    Article  PubMed  Google Scholar 

  • Helms J, Müller J, Schön F, Moser L, Arnold W, et al. (1997) Evaluation of performance with the COMBI 40 cochlear implant in adults: a multicentric clinical study. ORL J Otorhinolaryngol Relat Spec 59:23–35.

    Article  PubMed  CAS  Google Scholar 

  • Hinojosa R, Marion M (1983) Histopathology of profound sensorineural deafness. Ann N Y Acad Sci 405:459–484.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer J, von Ilberg C, Hubner-Egener J, Rupprecht V, Knecht R (2000) Optimized speech understanding with the continuous interleaved sampling speech coding strategy in cochlear implants: effect of variations in stimulation rate and number of channels. Ann Otol Rhinol Laryngol 109:1009–1020.

    PubMed  CAS  Google Scholar 

  • Kim KH, Kim JH, Kim DH (2007) An improved speech processor for cochlear implant based on active nonlinear model of biological cochlea. Conf Proc IEEE Eng Med Biol Soc 1:6352–6359.

    Google Scholar 

  • Koch DB, Downing M, Osberger MJ, Litvak L (2007) Using current steering to increase spectral resolution in CII and HiRes 90 K users. Ear Hear 28:39S–41S.

    Article  Google Scholar 

  • Lawson DT, Wilson BS, Zerbi M, Finley CC (1996) Speech processors for auditory prostheses: 22 electrode percutaneous study – results for the first five subjects. Third Quarterly Progress Report, NIH project N01-DC-5-2103. Bethesda, MD: Neural Prosthesis Program, National Institutes of Health.

    Google Scholar 

  • Leake PA, Rebscher SJ (2004) Anatomical considerations and long-term effects of electrical stimulation. In: Zeng F-G, Popper AN, Fay RR (eds), Auditory Prostheses: Cochlear Implants and Beyond. New York: Springer, pp. 101–148.

    Google Scholar 

  • Lim HH, Lenarz T, Anderson DJ, Lenarz M (2008) The auditory midbrain implant: effects of electrode location. Hear Res 242:74–85.

    Article  PubMed  Google Scholar 

  • Loeb GE, White MW, Merzenich MM (1983) Spatial cross correlation: a proposed mechanism for acoustic pitch perception. Biol Cybern 47:149–163.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Poveda EA, Meddis R (2001) A human nonlinear cochlear filterbank. J Acoust Soc Am 110:3107–3118.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Poveda EA, Plack CJ, Meddis R (2003) Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing. J Acoust Soc Am 113:951–960.

    Article  PubMed  Google Scholar 

  • McCreery DB (2008) Cochlear nucleus auditory prostheses. Hear Res 242:64–73.

    Article  PubMed  CAS  Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702–711.

    Article  PubMed  CAS  Google Scholar 

  • Meddis R (1988) Simulation of auditory-neural transduction: further studies. J Acoust Soc Am 83:1056–1063.

    Article  PubMed  CAS  Google Scholar 

  • Meddis R, O’Mard LP, Lopez-Poveda EA (2001) A computational algorithm for computing nonlinear auditory frequency selectivity. J Acoust Soc Am 109:2852–2861.

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Sando I, Hirsch BE, Orita Y (2002) Analysis of spiral ganglion cell populations in children with normal and pathological ears. Ann Otol Rhinol Laryngol 111:1059–1065.

    PubMed  Google Scholar 

  • National Institutes of Health (1995) Cochlear implants in adults and children. NIH Consensus Statement 13(2):1–30. (This statement also is available in JAMA 274:1955–1961.)

    Google Scholar 

  • Nogueira W, Kátai A, Harczos T, Klefenz F, Buechner A, Edler B (2007) An auditory model based strategy for cochlear implants. Conf Proc IEEE Eng Med Biol Soc 1:4127–4130.

    Google Scholar 

  • Otto SR, Brackmann DE, Hitselberger WE, Shannon RV, Kuchta J (2002) Multichannel auditory brainstem implant: update on performance in 61 patients. J Neurosurg 96:1063–1071.

    Article  PubMed  Google Scholar 

  • Oxenham AJ, Bernstein JGW, Penagos H (2004) Correct tonotopic representation is necessary for complex pitch perception. Proc Natl Acad Sci U S A 101:1421–1425.

    Article  PubMed  CAS  Google Scholar 

  • Parnas BR (1996) Noise and neuronal populations conspire to encode simple waveforms reliably. IEEE Trans Biomed Eng 43:313–318.

    Article  PubMed  CAS  Google Scholar 

  • Qin MK, Oxenham AJ (2006) Effects of introducing unprocessed low-frequency information on the reception of envelope-vocoder processed speech. J Acoust Soc Am 119:2417–2426.

    Article  PubMed  Google Scholar 

  • Robert A, Eriksson JL (1999) A composite model of the auditory periphery for simulating responses to complex tones. J Acoust Soc Am 106:1852–1864.

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein JT, Wilson BS, Finley CC, Abbas PJ (1999) Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res 127:108–118.

    Article  PubMed  CAS  Google Scholar 

  • Schatzer R, Wilson BS, Wolford RD, Lawson DT (2003) Speech processors for auditory prostheses: signal processing strategy for a closer mimicking of normal auditory functions. Sixth Quarterly Progress Report, NIH project N01-DC-2-1002. Bethesda, MD: Neural Prosthesis Program, National Institutes of Health.

    Google Scholar 

  • Spahr A, Dorman M, Loiselle L (2007) Performance of patients fit with different cochlear implant systems: effect of input dynamic range. Ear Hear 28:260–275.

    Article  PubMed  Google Scholar 

  • Tchorz J, Kollmeier B (1999) A model of auditory perception as a front end for automatic speech recognition. J Acoust Soc Am 106:2040–2050.

    Article  PubMed  CAS  Google Scholar 

  • Turner CW, Reiss LAJ, Gantz BJ (2008) Combined acoustic and electric hearing: preserving residual acoustic hearing. Hear Res 242:164–171.

    Article  PubMed  Google Scholar 

  • Tyler RS, Preece JP, Lansing CR, Otto SR, Gantz BJ (1986) Previous experience as a ­confounding factor in comparing cochlear-implant processing schemes. J Speech Hear Res 29:282–287.

    PubMed  CAS  Google Scholar 

  • Williams EJ, Bacon SP (2005) Compression estimates using behavioral and otoacoustic emission measures. Hear Res 201:44–54.

    Article  PubMed  Google Scholar 

  • Wilson BS (1997) The future of cochlear implants. Br J Audiol 31:205–225.

    Article  PubMed  CAS  Google Scholar 

  • Wilson BS (2004) Engineering design of cochlear implant systems. In: Zeng F-G, Popper AN, Fay RR (eds), Auditory Prostheses: Cochlear Implants and Beyond. New York: Springer, pp. 14–52.

    Google Scholar 

  • Wilson BS (2006) Speech processing strategies. In: Cooper HR, Craddock LC (eds), Cochlear Implants: A Practical Guide, 2nd ed. Hoboken, NJ: Wiley, pp. 21–69.

    Google Scholar 

  • Wilson BS, Dorman MF (2007) The surprising performance of present-day cochlear implants. IEEE Trans Biomed Eng 54:969–972.

    Article  PubMed  Google Scholar 

  • Wilson BS, Dorman MF (2008a) Interfacing sensors with the nervous system: lessons from the development and success of the cochlear implant. IEEE Sensors J 8:131–147.

    Article  Google Scholar 

  • Wilson BS, Dorman MF (2008b) Cochlear implants: a remarkable past and a brilliant future. Hear Res 242:3–21.

    Article  PubMed  Google Scholar 

  • Wilson BS, Dorman MF (2009) The design of cochlear implants. In: Niparko JK, Kirk KI, Mellon NK, Robbins AM, Tucci DL, Wilson BS (eds), Cochlear Implants: Principles & Practices, 2nd ed. Philadelphia: Lippincott Williams & Wilkins, pp. 95–135.

    Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM (1991) Better speech recognition with cochlear implants. Nature 352:236–238.

    Article  PubMed  CAS  Google Scholar 

  • Wilson BS, Lawson DT, Zerbi M, Finley CC (1994) Recent developments with the CIS strategies. In: Hochmair-Desoyer IJ, Hochmair ES (eds), Advances in Cochlear Implants. Vienna: Manz, pp. 103–112.

    Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Zerbi M (1997) Temporal representations with cochlear implants. Am J Otol 18:S30–S34.

    PubMed  CAS  Google Scholar 

  • Wilson BS, Lawson DT, Müller JM, Tyler RS, Kiefer J, et al. (2003) Cochlear implants: some likely next steps. Annu Rev Biomed Eng 5:207–249.

    Article  PubMed  CAS  Google Scholar 

  • Wilson BS, Schatzer R, Lopez-Poveda EA (2006) Possibilities for a closer mimicking of normal auditory functions with cochlear implants. In: Waltzman SB, Roland JT Jr (eds), Cochlear Implants, 2nd ed. New York: Thieme, pp. 48–56.

    Google Scholar 

  • Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648–670.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker E (1985) A hardware cochlear nonlinear pre-processing model with active feedback. J Acoust Soc Am 80:154–162.

    Article  Google Scholar 

  • Zwicker E, Peisl W (1990) Cochlear preprocessing in analog models, in digital models and in human inner ear. Hear Res 44:209–216.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Initial applications by the authors of relatively sophisticated auditory models in implant design were supported by the United States National Institutes of Health (NIH project N01-DC-2-1002 to Wilson) and by the Spanish Ministry of Science and Technology and IMSERSO (projects CIT-390000-2005-4, BFU2006-07536, and 131/06 to Lopez-Poveda). Material for segments of this chapter was drawn or adapted from several recent publications (Wilson 2006; Wilson and Dorman 2007, 2008a, b, 2009; Wilson et al. 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake S. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Wilson, B.S., Lopez-Poveda, E.A., Schatzer, R. (2010). Use of Auditory Models in Developing Coding Strategies for Cochlear Implants. In: Meddis, R., Lopez-Poveda, E., Fay, R., Popper, A. (eds) Computational Models of the Auditory System. Springer Handbook of Auditory Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5934-8_9

Download citation

Publish with us

Policies and ethics