Skip to main content

Computational Modeling of Sensorineural Hearing Loss

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 35))

Abstract

Models of auditory signal processing have been used for many years to provide parsimonious explanations for how the normal auditory system functions at the physiological and perceptual levels, as well as to provide useful insight into the physiological bases for perception. Such models have also been used in many applications, such as automatic speech recognition, audio coding, and signal-processing strategies for hearing aids and cochlear implants. Here, an application framework is considered that is motivated by the long-term goal of using computational models to maximize the ability to apply physiological knowledge to overcome auditory dysfunction in individual patients. This long-term goal motivates the present ­chapter’s focus, which is on physiologically based computational models of auditory signal processing that have been used to explore issues related to sensorineural hearing loss (SNHL). Specifically, this chapter considers phenomenological signal processing models (rather than biophysical models) that predict normal and impaired peripheral responses to complex stimuli. These types of models are likely to be most useful in the specific applications needed to achieve the stated long-term goal, such as explaining the physiological bases for perceptual effects of SNHL, diagnosing the underlying physiological cochlear status of individual patients, and fitting and designing hearing-aid algorithms in a quantitative physiological framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Assmann P, Summerfield Q (2004) The perception of speech under adverse conditions. In: Greenberg S, Ainsworth WA, Popper AN, Fay RR (eds), Speech Processing in the Auditory System. New York: Springer, pp. 231–308.

    Google Scholar 

  • Bacon SP, Oxenham AJ (2004) Psychophysical manifestations of compression: hearing-impaired listeners. In: Bacon SP, Fay RR, Popper AN (eds), Compression: From Cochlea to Cochlear Implants. New York: Springer, pp. 107–152.

    Google Scholar 

  • Baer T, Moore BCJ (1997) Evaluation of a scheme to compensate for reduced frequency selectivity in hearing-impaired subjects. In: Jesteadt W (ed), Modeling Sensorineural Hearing Loss. Mahwah, NJ: Erlbaum, pp. 329–341.

    Google Scholar 

  • Bauer CA, Brozoski TJ (2008) Tinnitus: theories, mechanisms and treatments. In: Schacht J, Popper AN, Fay RR (eds), Auditory Trauma, Protection and Repair. New York: Springer, pp. 101–130.

    Google Scholar 

  • Biondi E (1978) Auditory processing of speech and its implications with respect to prosthetic rehabilitation. The bioengineering viewpoint. Audiology 17:43–50.

    PubMed  CAS  Google Scholar 

  • Biondi E, Schmid R (1972) Mathematical models and prostheses for sense organs. In: Mohler RR, Ruberti A (eds), Theory and Applications of Variable Structure Systems. London: Academic, pp. 183–211.

    Google Scholar 

  • Bondy J, Becker S, Bruce IC, Trainor L, Haykin S (2004a) A novel signal-processing strategy for hearing-aid design: neurocompensation. Signal Process 84:1239–1253.

    Google Scholar 

  • Bondy J, Bruce IC, Becker S, Haykin S (2004b) Predicting speech intelligibility from a population of neurons. In: Thrun S, Saul L, Scholkopf B (eds), NIPS 2003 Conference Proceedings: Advances in Neural Information Processing Systems, Vol. 16. Cambridge, MA: MIT Press, pp. 1409–1416.

    Google Scholar 

  • Bruce IC (2004) Physiological assessment of contrast-enhancing frequency shaping and multiband compression in hearing aids. Physiol Meas 25:945–956.

    PubMed  Google Scholar 

  • Bruce IC, Zilany MSA (2007) Computational modelling of the cat auditory periphery: recent developments and future directions. In: Proceedings of 19th International Congress on Acoustics, Madrid, Spain, pp. PPA-07-004-IP: 001–006.

    Google Scholar 

  • Bruce IC, Sachs MB, Young ED (2003) An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. J Acoust Soc Am 113:369–388.

    PubMed  Google Scholar 

  • Bruce IC, Dinath F, Zeyl TJ (2007) Insights into optimal phonemic compression from a computational model of the auditory periphery. In: Dau T, Buchholz J, Harte JM, Christiansen TU (eds), Auditory Signal Processing in Hearing-Impaired Listeners, International Symposium on Audiological and Auditory Research (ISAAR). Denmark: Danavox Jubilee Foundation, pp. 73–81.

    Google Scholar 

  • Cai S, Ma WL, Young ED (2009) Encoding intensity in ventral cochlear nucleus following ­acoustic trauma: implications for loudness recruitment. J Assoc Res Otolaryngol 10:5–22.

    PubMed  Google Scholar 

  • Calandruccio L, Doherty KA, Carney LH, Kikkeri HN (2007) Perception of temporally processed speech by listeners with hearing impairment. Ear Hear 28:512–523.

    PubMed  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417.

    PubMed  CAS  Google Scholar 

  • Carney LH (1994) Spatiotemporal encoding of sound level: models for normal encoding and recruitment of loudness. Hear Res 76:31–44.

    PubMed  CAS  Google Scholar 

  • Carney LH, McDuffy MJ, Shekhter I (1999) Frequency glides in the impulse responses of ­auditory-nerve fibers. J Acoust Soc Am 105:2384–2391.

    PubMed  CAS  Google Scholar 

  • Carney LH, Heinz MG, Evilsizer ME, Gilkey RH, Colburn HS (2002) Auditory phase opponency: a temporal model for masked detection at low frequencies. Acust Acta Acust 88:334–347.

    Google Scholar 

  • Cedolin L, Delgutte B (2007) Spatio-temporal representation of the pitch of complex tones in the auditory nerve. In: Kollmeier B, Klump G, Hohmann V, Langemann U, M. Mauermann, Uppenkamp S, Verhey J (eds), Hearing: From Sensory Processing to Perception. Berlin: Springer, pp. 61–70.

    Google Scholar 

  • Chen Z, Becker S, Bondy J, Bruce IC, Haykin S (2005) A novel model-based hearing compensation design using a gradient-free optimization method. Neural Comput 17:2648–2671.

    PubMed  Google Scholar 

  • Colburn HS (1973) Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. J Acoust Soc Am 54:1458–1470.

    PubMed  CAS  Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383.

    PubMed  CAS  Google Scholar 

  • Delgutte B (1996) Physiological models for basic auditory percepts. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (eds), Auditory Computation. New York: Springer, pp. 157–220.

    Google Scholar 

  • Deng L, Geisler CD (1987) A composite auditory model for processing speech sounds. J Acoust Soc Am 82:2001–2012.

    PubMed  CAS  Google Scholar 

  • Dillon H (2001) Hearing Aids. New York: Thieme.

    Google Scholar 

  • Edwards B (2002) Signal processing, hearing aid design, and the psychoacoustic Turing test. IEEE Proc Int Conf Acoust Speech Signal Proc 4:3996–3999.

    Google Scholar 

  • Edwards B (2004) Hearing aids and hearing impairment. In: Greenberg S, Ainsworth WA, Popper AN, Fay RR (eds), Speech Processing in the Auditory System. New York: Springer, pp. 339–421.

    Google Scholar 

  • Edwards B (2007) The future of hearing aid technology. Trends Amplif 11:31–45.

    PubMed  Google Scholar 

  • Franck BA, van Kreveld-Bos CS, Dreschler WA, Verschuure H (1999) Evaluation of spectral enhancement in hearing aids, combined with phonemic compression. J Acoust Soc Am 106:1452–1464.

    PubMed  CAS  Google Scholar 

  • Gagné JP (1988) Excess masking among listeners with a sensorineural hearing loss. J Acoust Soc Am 83:2311–2321.

    PubMed  Google Scholar 

  • Geisler CD (1989) The responses of models of “high-spontaneous” auditory-nerve fibers in a damaged cochlea to speech syllables in noise. J Acoust Soc Am 86:2192–2205.

    PubMed  CAS  Google Scholar 

  • Giguère C, Smoorenburg GF (1998) Computational modeling of outer hair cells damage: Implications for hearing aid and signal processing. In: Dau T, Hohmann V, Kollmeier B (eds), Psychophysics, Physiology and Models of Hearing. Singapore: World Scientific, pp. 155–164.

    Google Scholar 

  • Giguère C, Woodland PC (1994a) A computational model of the auditory periphery for speech and hearing research. I. Ascending path. J Acoust Soc Am 95:331–342.

    PubMed  Google Scholar 

  • Giguère C, Woodland PC (1994b) A computational model of the auditory periphery for speech and hearing research.II. Descending paths. J Acoust Soc Am 95:343–349.

    PubMed  Google Scholar 

  • Giguère C, Bosman AJ, Smoorenburg GF (1997) Automatic speech recognition experiments with a model of normal and impaired peripheral hearing. Acust Acta Acust 83:1065–1076.

    Google Scholar 

  • Goldstein JL (1995) Relations among compression, suppression, and combination tones in mechanical responses of the basilar membrane: data and MBPNL model. Hear Res 89:52–68.

    PubMed  CAS  Google Scholar 

  • Harrison RV, Evans EF (1979) Some aspects of temporal coding by single cochlear fibres from regions of cochlear hair cell degeneration in the guinea pig. Arch Otorhinolaryngol 224:71–78.

    PubMed  CAS  Google Scholar 

  • Heinz MG (2000) Quantifying the effects of the cochlear amplifier on temporal and average-rate information in the auditory nerve. PhD dissertation, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Heinz MG (2007) Spatiotemporal encoding of vowels in noise studied with the responses of individual auditory nerve fibers. In: Kollmeier B, Klump G, Hohmann V, Langemann U, M. Mauermann, Uppenkamp S, Verhey J (eds), Hearing: From Sensory Processing to Perception. Berlin: Springer, pp. 107–115.

    Google Scholar 

  • Heinz MG, Young ED (2004) Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss. J Neurophysiol 91:784–795.

    PubMed  Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2001a) Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Comput 13:2273–2316.

    PubMed  CAS  Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2001b) Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection. J Acoust Soc Am 110:2065–2084.

    PubMed  CAS  Google Scholar 

  • Heinz MG, Zhang X, Bruce IC, Carney LH (2001c) Auditory-nerve model for predicting performance limits of normal and impaired listeners. Acoust Res Lett Online 2:91–96.

    Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2002) Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates. J Acoust Soc Am 111:996–1011.

    PubMed  Google Scholar 

  • Heinz MG, Issa JB, Young ED (2005a) Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. J Assoc Res Otolaryngol 6:91–105.

    PubMed  Google Scholar 

  • Heinz MG, Scepanovic D, Issa JB, Sachs MB, Young ED (2005b) Normal and impaired level encoding: effects of noise-induced hearing loss on auditory-nerve responses. In: Pressnitzer D, de Cheveigné A, McAdams S, Collet L (eds), Auditory Signal Processing: Physiology, Psychoacoustics and Models. New York: Springer, pp. 40–49.

    Google Scholar 

  • Huettel LG, Collins LM (2003) A theoretical comparison of information transmission in the peripheral auditory system: normal and impaired frequency discrimination. Speech Commun 39:5–21.

    Google Scholar 

  • Huettel LG, Collins LM (2004) A theoretical analysis of normal- and impaired-hearing intensity discrimination. IEEE Trans Speech Audio Process 12:323–333.

    Google Scholar 

  • Johnson TA, Gorga MP, Neely ST, Oxenham AJ, Shera CA (2007) Relationships between otoacoustic and psychophysical measures of cochlear function. In: Manley GA, Fay RR, Popper AN (eds), Active Processes and Otoacoustic Emissions in Hearing. New York: Springer, pp. 395–420.

    Google Scholar 

  • Joris PX, Van de Sande B, Louage DH, van der Heijden M (2006) Binaural and cochlear disparities. Proc Natl Acad Sci U S A 103:12917–12922.

    PubMed  CAS  Google Scholar 

  • Kates JM (1991a) Modeling normal and impaired hearing – implications for hearing-aid design. Ear Hear 12:S162–S176.

    Google Scholar 

  • Kates JM (1991b) A time-domain digital cochlear model. IEEE Trans Signal Process 39:2573–2592.

    Google Scholar 

  • Kates JM (1993) Toward a theory of optimal hearing-aid processing. J Rehabil Res Dev 30:39–48.

    PubMed  CAS  Google Scholar 

  • Kates JM (1997) Using a cochlear model to develop adaptive hearing-aid processing. In: Jesteadt W (ed) Modeling Sensorineural Hearing Loss. Mahwah, NJ: Erlbaum, pp. 79–92.

    Google Scholar 

  • Kiang NYS (1990) Curious oddments of auditory-nerve studies. Hear Res 49:1–16.

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Moxon EC (1974) Tails of tuning curves of auditory-nerve fibers. J Acoust Soc Am 55:620–630.

    PubMed  CAS  Google Scholar 

  • Launer S, Moore BCJ (2003) Use of a loudness model for hearing aid fitting. V. On-line gain control in a digital hearing aid. Int J Audiol 42:262–273.

    PubMed  Google Scholar 

  • Leijon A (1990) Hearing aid gain for loudness-density normalization in cochlear hearing losses with impaired frequency resolution. Ear Hear 12:242–250.

    Google Scholar 

  • Levitt H (2004) Compression Amplification. In: Bacon SP, Popper AN, Fay RR (eds), Compression: From Cochlea to Cochlear Implants. New York: Springer, pp. 153–183.

    Google Scholar 

  • Liberman MC (1984) Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift. Hear Res 16:33–41.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW (1984a) Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res 16:43–53.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW (1984b) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Kiang NYS (1984) Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hear Res 16:75–90.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304.

    PubMed  CAS  Google Scholar 

  • Loeb GE, White MW, Merzenich MM (1983) Spatial cross-correlation – a proposed mechanism for acoustic pitch perception. Biol Cybern 47:149–163.

    PubMed  CAS  Google Scholar 

  • Lopez-Poveda EA (2005) Spectral processing by the peripheral auditory system: facts and models. Int Rev Neurobiol 70:7–48.

    PubMed  Google Scholar 

  • Lopez-Poveda EA, Meddis R (2001) A human nonlinear cochlear filterbank. J Acoust Soc Am 110:3107–3118.

    PubMed  CAS  Google Scholar 

  • Lopez-Poveda EA, Plack CJ, Meddis R (2003) Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing. J Acoust Soc Am 113:951–960.

    PubMed  Google Scholar 

  • Lopez-Poveda EA, Johannesen PT, Merchán MA (2009) Estimation of the degree of inner and outer hair cell dysfunction from distortion product otoacoustic emission input/output functions. Audiol Med 7:22–28.

    Google Scholar 

  • Lorenzi C, Gilbert G, Carn H, Garnier S, Moore BCJ (2006) Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc Natl Acad Sci U S A 103:18866–18869.

    PubMed  CAS  Google Scholar 

  • Meddis R, O’Mard LP, Lopez-Poveda EA (2001) A computational algorithm for computing nonlinear auditory frequency selectivity. J Acoust Soc Am 109:2852–2861.

    PubMed  CAS  Google Scholar 

  • Miller RL, Schilling JR, Franck KR, Young ED (1997) Effects of acoustic trauma on the representation of the vowel /e/ in cat auditory nerve fibers. J Acoust Soc Am 101:3602–3616.

    PubMed  CAS  Google Scholar 

  • Miller RL, Calhoun BM, Young ED (1999) Contrast enhancement improves the representation of /e/-like vowels in the hearing-impaired auditory nerve. J Acoust Soc Am 106:2693–2708.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (1995) Perceptual Consequences of Cochlear Damage. New York: Oxford University Press.

    Google Scholar 

  • Moore BCJ (2000) Use of a loudness model for hearing aid fitting. IV. Fitting hearing aids with multi-channel compression so as to restore ‘normal’ loudness for speech at different levels. Br J Audiol 34:165–177.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (2004) Dead regions in the cochlea: conceptual foundations, diagnosis, and clinical applications. Ear Hear 25:98–116.

    PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR (1997) A model of loudness perception applied to cochlear hearing loss. Aud Neurosci 3:289–311.

    Google Scholar 

  • Moore BCJ, Glasberg BR (2004) A revised model of loudness perception applied to cochlear hearing loss. Hear Res 188:70–88.

    PubMed  Google Scholar 

  • Moore BCJ, Oxenham AJ (1998) Psychoacoustic consequences of compression in the peripheral auditory system. Psychol Rev 105:108–124.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Stone MA (1999) Use of a loudness model for hearing aid fitting: III. A general method for deriving initial fittings for hearing aids with multi-channel compression. Br J Audiol 33:241–258.

    PubMed  CAS  Google Scholar 

  • Oxenham AJ, Bacon SP (2003) Cochlear compression: perceptual measures and implications for normal and impaired hearing. Ear Hear 24:352–366.

    PubMed  Google Scholar 

  • Patuzzi R (1996) Cochlear micromechanics and macromechanics. In: Dallos P, Popper AN, Fay RR (eds), The Cochlea. New York: Springer, pp. 186–257.

    Google Scholar 

  • Plack CJ, Drga V, Lopez-Poveda EA (2004) Inferred basilar-membrane response functions for listeners with mild to moderate sensorineural hearing loss. J Acoust Soc Am 115:1684–1695.

    PubMed  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    PubMed  CAS  Google Scholar 

  • Ruggero MA (1992) Physiology and coding of sound in the auditory nerve. In: Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neurophysiology. New York: Springer, pp. 34–93.

    Google Scholar 

  • Ruggero MA, Rich NC (1991) Furosemide alters organ of Corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11:1057–1067.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC, Shivapuja BG, Temchin AN (1996) Auditory-nerve responses to low-frequency tones: intensity dependence. Aud Neurosci 2:159–185.

    Google Scholar 

  • Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Kiang NY (1968) Two-tone inhibition in auditory-nerve fibers. J Acoust Soc Am 43:1120–1128.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Bruce IC, Miller RL, Young ED (2002) Biological basis of hearing-aid design. Ann Biomed Eng 30:157–168.

    PubMed  Google Scholar 

  • Schaette R, Kempter R (2006) Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur J Neurosci 23:3124–3138.

    PubMed  Google Scholar 

  • Schmiedt RA, Zwislocki JJ, Hamernik RP (1980) Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal-wave patterns. J Neurophysiol 43:1367–1389.

    PubMed  CAS  Google Scholar 

  • Schmiedt RA, Lang H, Okamura HO, Schulte BA (2002) Effects of furosemide applied chronically to the round window: a model of metabolic presbyacusis. J Neurosci 22:9643–9650.

    PubMed  CAS  Google Scholar 

  • Schoonhoven R, Keijzer J, Versnel H, Prijs VF (1994) A dual filter model describing single-fiber responses to clicks in the normal and noise-damaged cochlea. J Acoust Soc Am 95:2104–2121.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984a) The effects of furosemide on the endocochlear potential and auditory-nerve fiber tuning curves in cats. Hear Res 14:305–314.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1984b) Furosemide selectively reduces one component in rate-level functions from auditory-nerve fibers. Hear Res 15:69–72.

    PubMed  CAS  Google Scholar 

  • Shamma SA (1985) Speech processing in the auditory system. I: The representation of speech sounds in the responses of the auditory nerve. J Acoust Soc Am 78:1612–1621.

    PubMed  CAS  Google Scholar 

  • Shamma SA, Shen NM, Gopalaswamy P (1989) Stereausis: binaural processing without neural delays. J Acoust Soc Am 86:989–1006.

    PubMed  CAS  Google Scholar 

  • Shi LF, Carney LH, Doherty KA (2006) Correction of the peripheral spatiotemporal response pattern: a potential new signal-processing strategy. J Speech Lang Hear Res 49:848–855.

    PubMed  Google Scholar 

  • Siebert WM (1970) Frequency discrimination in auditory system – place or periodicity mechanisms? Proc IEEE 58:723–730.

    Google Scholar 

  • Tan Q, Carney LH (2003) A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. J Acoust Soc Am 114:2007–2020.

    PubMed  Google Scholar 

  • Wang J, Powers NL, Hofstetter P, Trautwein P, Ding D, Salvi R (1997) Effects of selective inner hair cell loss on auditory nerve fiber threshold, tuning and spontaneous and driven discharge rate. Hear Res 107:67–82.

    PubMed  CAS  Google Scholar 

  • Wong JC, Miller RL, Calhoun BM, Sachs MB, Young ED (1998) Effects of high sound levels on responses to the vowel /e/ in cat auditory nerve. Hear Res 123:61–77.

    PubMed  CAS  Google Scholar 

  • Woolf NK, Ryan AF, Bone RC (1981) Neural phase-locking properties in the absence of cochlear outer hair cells. Hear Res 4:335–346.

    PubMed  CAS  Google Scholar 

  • Zeng FG, Kong YY, Michalewski HJ, Starr A (2005) Perceptual consequences of disrupted auditory nerve activity. J Neurophysiol 93:3050–3063.

    PubMed  Google Scholar 

  • Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648–670.

    PubMed  CAS  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    PubMed  CAS  Google Scholar 

  • Zilany MSA, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446–1466.

    PubMed  Google Scholar 

  • Zilany MSA, Bruce IC (2007a) Predictions of speech intelligibility with a model of the normal and impaired auditory-periphery. In: Proceedings of 3rd International IEEE EMBS Conference on Neural Engineering. Piscataway, NJ: IEEE, pp. 481–485.

    Google Scholar 

  • Zilany MSA, Bruce IC (2007b) Representation of the vowel /e/ in normal and impaired auditory nerve fibers: model predictions of responses in cats. J Acoust Soc Am 122:402–417.

    PubMed  Google Scholar 

Download references

Acknowledgments

Preparation of this chapter was partially supported by a grant from the National Institute on Deafness and Other Communication Disorders (R03-DC007348). Thanks are expressed to Kimberly Chamberlain for her assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Heinz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Heinz, M.G. (2010). Computational Modeling of Sensorineural Hearing Loss. In: Meddis, R., Lopez-Poveda, E., Fay, R., Popper, A. (eds) Computational Models of the Auditory System. Springer Handbook of Auditory Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5934-8_7

Download citation

Publish with us

Policies and ethics