Skip to main content

Computational Models of Inferior Colliculus Neurons

  • Chapter
  • First Online:
Book cover Computational Models of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 35))

Abstract

The inferior colliculus (IC), the principal auditory nucleus in the midbrain, occupies a key position in the auditory system. It receives convergent input from most of the auditory nuclei in the brain stem, and in turn, projects to the auditory forebrain (Winer and Schreiner 2005). The IC is therefore a major site for the integration and reorganization of the different types of auditory information conveyed by largely parallel neural pathways in the brain stem, and its neural response properties are accordingly very diverse and complex (Winer and Schreiner 2005). The function of the IC has been hard to pinpoint. The IC has been called the “nexus of the auditory pathway” (Aitkin 1986), a “shunting yard of acoustical information processing” (Ehret and Romand 1997), and the locus of a “transformation [that] adjusts the pace of sensory input to the pace of behavior” (Casseday and Covey 1996). The vague, if not metaphorical, nature of these descriptions partly reflects the lack of a quantitative understanding of IC processing such as that which has emerged from computational studies of the cochlear nucleus (Voigt, Chapter 3) and superior olivary complex (Colburn, Chapter 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Borisyuk et al. (2002) created hyperpolarization using a voltage-gated potassium channel because their model does not explicitly generate action potentials, which are needed to activate the calcium-gated channels used by Cai et al. (1998b). This difference does not appear significant; the two models similarly replicate the hysteresis effects observed in the physiological data.

  2. 2.

    One problem with this model structure is that the ICC cell responds equally well to harmonics of the BMF as to the BMF itself. Voutsas et al. (2005) avoid this problem by having the trigger neuron inhibit the ICC cell, via an interneuron putatively located in the VNLL, for a predefined period of time equal to at least one-half of the integration period.

  3. 3.

    Studies in both anesthetized cat (Langner and Schreiner 1988) and awake chinchilla (Langner et al. 2002) have reported IC units with rate-BMFs as high at 1,000 Hz, but most of these were multi-units (as opposed to single units) and could be recordings from axons of incoming lemniscal inputs rather than from cell bodies of ICC neurons (see Joris et al. 2004 for discussion).

  4. 4.

    At modulation frequencies above approximately 800 Hz, the EN neurons providing inhibitory inputs to the LP neurons no longer respond in a sustained manner, causing the firing rate of the LP neurons to increase rapidly. Thus, strictly speaking, the LP neurons have band-reject, not lowpass, rate-MTFs.

  5. 5.

    The periodicity equation gives a linear relationship between best modulation period and carrier period (in which the slope is a ratio of small integers), while de Boers’ rule gives a linear relationship between perceived pitch frequency and carrier frequency. The two relationships are very similar when examined over a limited range of carrier frequencies (Langner 1985).

Abbreviations

AM:

Amplitude modulation

AN:

Auditory nerve

BD:

Best delay

BMF:

Best modulation frequency

BF:

Best frequency

CD:

Characteristic delay

CN:

Cochlear nucleus

CP:

Characteristic phase

CR:

Chopping rate

DCN:

Dorsal cochlear nucleus

DNLL:

Dorsal nucleus of the lateral lemniscus

EI:

Contralaterally excited and ipsilaterally inhibited

EI/F:

EI with facilitation

F0:

Fundamental frequency

IC:

Inferior colliculus

ICC:

Central nucleus of the inferior colliculus

ICX:

External nucleus of the inferior colliculus

ILD:

Interaural level difference

IPD:

Interaural phase difference

ITD:

Interaural time difference

LSO:

Lateral superior olive

MNTB:

Medial nucleus of the trapezoid body

MSO:

Medial superior olive

MTF:

Modulation transfer function

PE:

Precedence effect

PIR:

Postinhibitory rebound

SOC:

Superior olivary complex

VNLL:

Ventral nucleus of the lateral lemniscus

VCN:

Ventral cochlear nucleus

References

  • Aitkin LM (1986) The Auditory Midbrain: Structure and Function of the Central Auditory Pathway. Clifton, NJ: Humana.

    Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997a) Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. J Neurophysiol 78:1222–1236.

    CAS  Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997b) Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. II. Coincidence detection. J Neurophysiol 78:1237–1247.

    CAS  Google Scholar 

  • Bernstein JG, Oxenham AJ (2003) Pitch discrimination of diotic and dichotic tone complexes: harmonic resolvability or harmonic number? J Acoust Soc Am 113:3323–3334.

    PubMed  Google Scholar 

  • Bernstein JG, Oxenham AJ (2004) Effect of stimulus level and harmonic resolvability on pitch discrimination. J Acoust Soc Am 115:2389.

    Google Scholar 

  • Blackburn CC, Sachs MB (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J Neurophysiol 62:1303–1329.

    PubMed  CAS  Google Scholar 

  • Borisyuk A, Semple MN, Rinzel J (2001) Computational model for the dynamic aspects of sound processing in the auditory midbrain. Neurocomputing 38–40:1127–1134.

    Google Scholar 

  • Borisyuk A, Semple MN, Rinzel J (2002) Adaptation and inhibition underlie responses to time-varying interaural phase cues in a model of inferior colliculus neurons. J Neurophysiol 88:2134–2146.

    PubMed  Google Scholar 

  • Borst M, Langner G, Palm G (2004) A biologically motivated neural network for phase extraction from complex sounds. Biol Cybern 90:98–104.

    PubMed  Google Scholar 

  • Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31:442–454.

    PubMed  CAS  Google Scholar 

  • Braasch J, Blauert J (2003) The precedence effect for noise bursts of different bandwidths. II. Comparison of model algorithms. Acoust Sci Technol 24:293–303.

    Google Scholar 

  • Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547.

    PubMed  CAS  Google Scholar 

  • Brughera A, Stutman E, Carney LH, Colburn HS (1996) A model for excitation and inhibition for cells in the medial superior olive. Audit Neurosci 2:219–233.

    Google Scholar 

  • Burger RM, Pollak GD (2001) Reversible inactivation of the dorsal nucleus of the lateral lemniscus reveals its role in the processing of multiple sound sources in the inferior colliculus of bats. J Neurosci 21:4830–4843.

    PubMed  CAS  Google Scholar 

  • Cai H, Carney LH, Colburn HS (1998a) A model for binaural response properties of inferior colliculus neurons. I. A model with interaural time difference-sensitive excitatory and inhibitory inputs. J Acoust Soc Am 103:475–493.

    CAS  Google Scholar 

  • Cai H, Carney LH, Colburn HS (1998b) A model for binaural response properties of inferior colliculus neurons. II. A model with interaural time difference-sensitive excitatory and inhibitory inputs and an adaptation mechanism. J Acoust Soc Am 103:494–506.

    CAS  Google Scholar 

  • Caird D, Klinke R (1983) Processing of binaural stimuli by cat superior olivary complex neurons. Exp Brain Res 52:385–399.

    PubMed  CAS  Google Scholar 

  • Cant NB (2005) Projections from the cochlear nuclear complex to the inferior colliculus. In: Winer JA, Schreiner CE (eds), The Inferior Colliculus. New York: Springer, pp 115–131.

    Google Scholar 

  • Cariani PA (2001) Neural timing nets. Neural Netw 14:737–753.

    PubMed  CAS  Google Scholar 

  • Cariani PA, Delgutte B (1996) Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J Neurophysiol 76:1698–1716.

    CAS  Google Scholar 

  • Carlyon RP, Shackleton TM (1994) Comparing the fundamental frequencies of resolved and unresolved harmonics: evidence for two pitch mechanisms? J Acoust Soc Am 95:3541–3554.

    Google Scholar 

  • Carlyon RP, van Wieringen A, Long CJ, Deeks JM, Wouters J (2002) Temporal pitch mechanisms in acoustic and electric hearing. J Acoust Soc Am 112:621–633.

    PubMed  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417.

    PubMed  CAS  Google Scholar 

  • Casseday JH, Covey E (1996) A neuroethological theory of the operation of the inferior colliculus. Brain Behav Evol 47:311–336.

    PubMed  CAS  Google Scholar 

  • Cedolin L, Delgutte B (2005) Pitch of complex tones: rate-place and interspike interval representations in the auditory nerve. J Neurophysiol 94:347–362.

    PubMed  Google Scholar 

  • Cedolin L, Delgutte B (2007) Spatio-temporal representation of the pitch of complex tones in the auditory nerve. In: Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, Uppenkamp S, Verhey J (eds), Hearing – From Sensory Processing to Perception Heidelberg: Springer, pp 61–70.

    Google Scholar 

  • Chase SM, Young ED (2005) Limited segregation of different types of sound localization information among classes of units in the inferior colliculus. J Neurosci 25:7575–7585.

    PubMed  CAS  Google Scholar 

  • Colburn HS (1996) Computational models of binaural processing. In: Hawkins HH, McMullen TA, Popper AN, Fay RR (eds), Auditory Computation. New York: Springer, pp 332–401.

    Google Scholar 

  • Darwin CJ, Carlyon RP (1995) Auditory grouping. In: Moore BCJ (ed), The Handbook of Perception and Cognition. New York: Academic, pp 387–424.

    Google Scholar 

  • Davis KA (2002) Evidence of a functionally segregated pathway from dorsal cochlear nucleus to inferior colliculus. J Neurophysiol 87:1824–1835.

    PubMed  Google Scholar 

  • Davis KA, Ramachandran R, May BJ (1999) Single-unit responses in the inferior colliculus of decerebrate cats. II. Sensitivity to interaural level differences. J Neurophysiol 82:164–175.

    CAS  Google Scholar 

  • Davis KA, Ramachandran R, May BJ (2003) Auditory processing of spectral cues for sound localization in the inferior colliculus. J Assoc Res Otolaryngol 4:148–163.

    PubMed  Google Scholar 

  • de Boer E (1956) On the “Residue” in Hearing (PhD thesis) Amsterdam: University of Amsterdam.

    Google Scholar 

  • de Cheveigné A (2005) Pitch perception models. In: Plack CJ, Oxenham AJ, Fay RR, Popper AN (eds), Pitch Neural Coding and Perception. New York: Springer, pp 169–233.

    Google Scholar 

  • Devore S, Ihlefeld A, Hancock K, Shinn-Cunningham B, Delgutte B (2009) Accurate sound localization in reverberant environments is mediated by robust encoding of spatial cues in the auditory midbrain. Neuron 62:123–134.

    PubMed  CAS  Google Scholar 

  • Dicke U, Ewert SD, Dau T, Kollmeier B (2007) A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system. J Acoust Soc Am 121:310–326.

    PubMed  Google Scholar 

  • Dong CJ, Swindale NV, Zakarauskas P, Hayward V, Cynader MS (2000) The auditory motion aftereffect: its tuning and specificity in the spatial and frequency domains. Percept Psychophys 62:1099–1111.

    PubMed  CAS  Google Scholar 

  • Dynes SB, Delgutte B (1992) Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res 58:79–90.

    PubMed  CAS  Google Scholar 

  • Ehret G, Romand R, eds (1997) The Central Auditory System. New York: Oxford University Press.

    Google Scholar 

  • Fitzpatrick DC, Kuwada S, Kim DO, Parham K, Batra R (1999) Responses of neurons to click-pairs as simulated echoes: auditory nerve to auditory cortex. J Acoust Soc Am 106:3460–3472.

    PubMed  CAS  Google Scholar 

  • Friedel P, Burck M, Leo van Hemmen J (2007) Neuronal identification of acoustic signal periodicity. Biol Cybern 97:247–260.

    PubMed  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44:99–122.

    CAS  Google Scholar 

  • Geis HR, Borst JG (2009) Intracellular responses of neurons in the mouse inferior colliculus to sinusoidal amplitude-modulated tones. J Neurophysiol 101:2002–2016.

    PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636.

    PubMed  CAS  Google Scholar 

  • Grantham DW (1998) Auditory motion aftereffects in the horizontal plane: the effects of spectral region, spatial sector, and spatial richness. Acustica 84:337–347.

    Google Scholar 

  • Grantham DW, Wightman FL (1978) Detectability of varying interaural temporal differences. J Acoust Soc Am 63:511–523.

    PubMed  CAS  Google Scholar 

  • Green DM, Swets JA (1988) Signal Detection Theory and Psychophysics. Los Altos, CA: Peninsula.

    Google Scholar 

  • Griffiths TD, Rees G, Rees A, Green GG, Witton C, Rowe D, Buchel C, Turner R, Frackowiak RS (1998) Right parietal cortex is involved in the perception of sound movement in humans. Nat Neurosci 1:74–79.

    PubMed  CAS  Google Scholar 

  • Grothe B (1994) Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. J Neurophysiol 71:706–721.

    PubMed  CAS  Google Scholar 

  • Grothe B, Covey E, Casseday JH (2001) Medial superior olive of the big brown bat: neuronal responses to pure tones, amplitude modulations, and pulse trains. J Neurophysiol 86:2219–2230.

    PubMed  CAS  Google Scholar 

  • Guerin A, Jeannes Rle B, Bes J, Faucon G, Lorenzi C (2006) Evaluation of two computational models of amplitude modulation coding in the inferior colliculus. Hear Res 211:54–62.

    PubMed  Google Scholar 

  • Hancock KE (2007) A physiologically-based population rate code for interaural time differences (ITDs) predicts bandwidth-dependent lateralization. In: Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, Uppenkamp S, Verhey J (eds), Hearing – From Sensory Processing to Perception. Heidelberg: Springer, pp 389–397.

    Google Scholar 

  • Hancock KE, Delgutte B (2004) A physiologically based model of interaural time difference discrimination. J Neurosci 24:7110–7117.

    PubMed  CAS  Google Scholar 

  • Hancock KE, Voigt HF (1999) Wideband inhibition of dorsal cochlear nucleus type IV units in cat: a computational model. Ann Biomed Eng 27:73–87.

    PubMed  CAS  Google Scholar 

  • Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430:682–686.

    PubMed  CAS  Google Scholar 

  • Hartung K, Trahiotis C (2001) Peripheral auditory processing and investigations of the “precedence effect” which utilize successive transient stimuli. J Acoust Soc Am 110:1505–1513.

    PubMed  CAS  Google Scholar 

  • Hewitt MJ, Meddis R (1994) A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus. J Acoust Soc Am 95:2145–2159.

    PubMed  CAS  Google Scholar 

  • Hewitt MJ, Meddis R, Shackleton TM (1992) A computer model of a cochlear-nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli. J Acoust Soc Am 91:2096–2109.

    PubMed  CAS  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    PubMed  CAS  Google Scholar 

  • Joris PX, Yin TC (1998) Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. J Neurophysiol 79:253–269.

    CAS  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577.

    PubMed  CAS  Google Scholar 

  • Keller CH, Takahashi TT (1996) Binaural cross-correlation predicts the responses of neurons in the owl’s auditory space map under conditions simulating summing localization. J Neurosci 16:4300–4309.

    PubMed  CAS  Google Scholar 

  • Kimball J, Lomakin O, Davis KA (2003) A computational model of spectral processing pathway from dorsal cochlear nucleus to inferior colliculus. In: BME Annual Fall Meeting, Nashville, TN, p 173.

    Google Scholar 

  • Krishna BS, Semple MN (2000) Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. J Neurophysiol 84:255–273.

    PubMed  CAS  Google Scholar 

  • Lane CC, Delgutte B (2005) Neural correlates and mechanisms of spatial release from masking: single-unit and population responses in the inferior colliculus. J Neurophysiol 94:1180–1198.

    PubMed  Google Scholar 

  • Langner G (1981) Neuronal mechanisms for pitch analysis in the time domain. Exp Brain Res 44:450–454.

    PubMed  CAS  Google Scholar 

  • Langner G (1983) Evidence for neuronal periodicity detection in the auditory system of the Guinea fowl: implications for pitch analysis in the time domain. Exp Brain Res 52:333–355.

    PubMed  CAS  Google Scholar 

  • Langner G (1985) Time coding and periodicity pitch. In: Michelsen A (ed), Time Resolution in Auditory Systems. Heidelberg: Springer, pp 108–121.

    Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60:115–142.

    PubMed  CAS  Google Scholar 

  • Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J Neurophysiol 60:1799–1822.

    CAS  Google Scholar 

  • Langner G, Albert M, Briede T (2002) Temporal and spatial coding of periodicity information in the inferior colliculus of awake chinchilla (Chinchilla laniger). Hear Res 168:110–130.

    PubMed  Google Scholar 

  • Li L, Kelly JB (1992) Inhibitory influence of the dorsal nucleus of the lateral lemniscus on binaural responses in the rat’s inferior colliculus. J Neurosci 12:4530–4539.

    PubMed  CAS  Google Scholar 

  • Licklider JC (1951) A duplex theory of pitch perception. Experientia 7:128–134.

    PubMed  CAS  Google Scholar 

  • Lindemann W (1986) Extension of a binaural cross-correlation model by contralateral inhibition. II. The law of the first wave front. J Acoust Soc Am 80:1623–1630.

    CAS  Google Scholar 

  • Litovsky RY, Yin TC (1998) Physiological studies of the precedence effect in the inferior colliculus of the cat. II. Neural mechanisms. J Neurophysiol 80:1302–1316.

    CAS  Google Scholar 

  • Litovsky RY, Colburn HS, Yost WA, Guzman SJ (1999) The precedence effect. J Acoust Soc Am 106:1633–1654.

    PubMed  CAS  Google Scholar 

  • Liu LF, Palmer AR, Wallace MN (2006) Phase-locked responses to pure tones in the inferior colliculus. J Neurophysiol 95:1926–1935.

    PubMed  Google Scholar 

  • Loftus WC, Bishop DC, Saint Marie RL, Oliver DL (2004) Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive. J Comp Neurol 472:330–344.

    PubMed  Google Scholar 

  • Malmierca MS, Saint Marie RL, Merchán MA, Oliver DL (2005) Laminar inputs from dorsal cochlear nucleus and ventral cochlear nucleus to the central nucleus of the inferior colliculus: two patterns of convergence. Neuroscience 136:883–894.

    PubMed  CAS  Google Scholar 

  • McAlpine D, Palmer AR (2002) Blocking GABAergic inhibition increases sensitivity to sound motion cues in the inferior colliculus. J Neurosci 22:1443–1453.

    PubMed  CAS  Google Scholar 

  • McAlpine D, Jiang D, Shackleton TM, Palmer AR (1998) Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus. J Neurosci 18:6026–6039.

    PubMed  CAS  Google Scholar 

  • McAlpine D, Jiang D, Shackleton TM, Palmer AR (2000) Responses of neurons in the inferior colliculus to dynamic interaural phase cues: evidence for a mechanism of binaural adaptation. J Neurophysiol 83:1356–1365.

    PubMed  CAS  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401.

    PubMed  CAS  Google Scholar 

  • Meddis R, Hewitt MJ (1991) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I. Pitch identification. J Acoust Soc Am 89:2866–2882.

    Google Scholar 

  • Meddis R, O’Mard L (2006) Virtual pitch in a computational physiological model. J Acoust Soc Am 120:3861–3869.

    PubMed  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42:135–159.

    PubMed  CAS  Google Scholar 

  • Moore GA, Moore BC (2003) Perception of the low pitch of frequency-shifted complexes. J Acoust Soc Am 113:977–985.

    PubMed  Google Scholar 

  • Mossop JE, Culling JF (1998) Lateralization of large interaural delays. J Acoust Soc Am 104:1574–1579.

    PubMed  CAS  Google Scholar 

  • Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116:2173–2186.

    PubMed  Google Scholar 

  • Nelson PC, Carney LH (2007) Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. J Neurophysiol 97:522–539.

    PubMed  Google Scholar 

  • Oliver DL (2005) Neuronal organization in the inferior colliculus. In: Winer JA, Schreiner CE (eds), The Inferior Colliculus. New York: Springer, pp 69–114.

    Google Scholar 

  • Oliver DL, Huerta MF (1992) Inferior and superior colliculi. In: Webster DB, Popper AN, Fay RR (eds), The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer, pp 168–222.

    Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222:237–264.

    PubMed  CAS  Google Scholar 

  • Oliver DL, Beckius GE, Bishop DC, Kuwada S (1997) Simultaneous anterograde labeling of axonal layers from lateral superior olive and dorsal cochlear nucleus in the inferior colliculus of cat. J Comp Neurol 382:215–229.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Kuwada S (2005) Binaural and spatial coding in the inferior colliculus. In: Winer JA, Schreiner CE (eds), The Inferior Colliculus. New York: Springer, pp 377–410.

    Google Scholar 

  • Park TJ, Pollak GD (1993) GABA shapes sensitivity to interaural intensity disparities in the mustache bat’s inferior colliculus: implications for encoding sound location. J Neurosci 13:2050–2067.

    PubMed  CAS  Google Scholar 

  • Paterson M, McAlpine D (2005) Effects of peripheral processing are evident in neural correlates of precedence effect. Assoc Res Otolaryn Abstr 28:1414.

    Google Scholar 

  • Pecka M, Zahn TP, Saunier-Rebori B, Siveke I, Felmy F, Wiegrebe L, Klug A, Pollak GD, Grothe B (2007) Inhibiting the inhibition: a neuronal network for sound localization in reverberant environments. J Neurosci 27:1782–1790.

    PubMed  CAS  Google Scholar 

  • Peña JL, Konishi M (2001) Auditory spatial receptive fields created by multiplication. Science 292:249–252.

    PubMed  Google Scholar 

  • Perkel D, Gerstein G, Moore G (1967) Neuronal spike trains and stochastic point processes: I. The single spike train. Biophys J 7:391–418.

    CAS  Google Scholar 

  • Plack CJ, Oxenham AJ (2005) The psychophysics of pitch. In: Plack CJ, Oxenham AJ, Fay RR, Popper AN (eds), Pitch Neural Coding and Perception. New York: Springer, pp 7–55.

    Google Scholar 

  • Plomp R (1964) The ear as a frequency analyzer. J Acoust Soc Am 36:1628–1636.

    Google Scholar 

  • Pollak GD, Burger RM, Park TJ, Klug A, Bauer EE (2002) Roles of inhibition for transforming binaural properties in the brainstem auditory system. Hear Res 168:60–78.

    PubMed  Google Scholar 

  • Pressnitzer D, Patterson RD, Krumbholz K (2001) The lower limit of melodic pitch. J Acoust Soc Am 109:2074–2084.

    PubMed  CAS  Google Scholar 

  • Ramachandran R, Davis KA, May BJ (1999) Single-unit responses in the inferior colliculus of decerebrate cats. I. Classification based on frequency response maps. J Neurophysiol 82:152–163.

    CAS  Google Scholar 

  • Reed MC, Blum JJ (1999) Model calculations of steady state responses to binaural stimuli in the dorsal nucleus of the lateral lemniscus. Hear Res 136:13–28.

    PubMed  CAS  Google Scholar 

  • Rees A, Langner G (2005) Temporal coding in the auditory midbrain. In: Winer JA, Schreiner CE (eds), The Inferior Colliculus. New York: Springer, pp 346–376.

    Google Scholar 

  • Rhode WS, Greenberg S (1994) Encoding of amplitude modulation in the cochlear nucleus of the cat. J Neurophysiol 71:1797–1825.

    PubMed  CAS  Google Scholar 

  • Rosen S (1992) Temporal information in speech: acoustic, auditory and linguistic aspects. Philos Trans R Soc Lond B Biol Sci 336:367–373.

    PubMed  CAS  Google Scholar 

  • Rothman JS, Young ED, Manis PB (1993) Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J Neurophysiol 70:2562–2583.

    PubMed  CAS  Google Scholar 

  • Rucci M, Wray J (1999) Binaural cross-correlation and auditory localization in the barn owl: a theoretical study. Neural Netw 12:31–42.

    PubMed  Google Scholar 

  • Sachs MB, Young ED (1979) Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J Acoust Soc Am 66:470–479.

    PubMed  CAS  Google Scholar 

  • Saldaña E, Merchán MA (2005) Intrinsic and commissural connections of the inferior colliculus. In: Winer JA, Schreiner CE (eds), The Inferior Colliculus. New York: Springer, pp 155–181.

    Google Scholar 

  • Sanes DH, Malone BJ, Semple MN (1998) Role of synaptic inhibition in processing of dynamic binaural level stimuli. J Neurosci 18:794–803.

    PubMed  CAS  Google Scholar 

  • Schofield BR (2005) Superior olivary complex and lateral lemniscal connections of the auditory midbrain. In: Winer JA, Schreiner CE (eds), The Inferior Colliculus. New York: Springer, pp 132–154.

    Google Scholar 

  • Schreiner CE, Langner G (1988) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J Neurophysiol 60:1823–1840.

    CAS  Google Scholar 

  • Shackleton TM, Meddis R, Hewitt MJ (1992) Across frequency integration in a model of lateralization. J Acoust Soc Am 91:2276–2279.

    Google Scholar 

  • Shackleton TM, McAlpine D, Palmer AR (2000) Modelling convergent input onto interaural-delay-sensitive inferior colliculus neurones. Hear Res 149:199–215.

    PubMed  CAS  Google Scholar 

  • Shamma SA (1985) Speech processing in the auditory system. I: The representation of speech sounds in the responses of the auditory nerve. J Acoust Soc Am 78:1612–1621.

    CAS  Google Scholar 

  • Shannon RV (1983) Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hear Res 11:157–189.

    CAS  Google Scholar 

  • Singh NC, Theunissen FE (2003) Modulation spectra of natural sounds and ethological theories of auditory processing. J Acoust Soc Am 114:3394–3411.

    PubMed  Google Scholar 

  • Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21:2861–2877.

    PubMed  CAS  Google Scholar 

  • Slaney M, Lyon RF (1990) A perceptual pitch detector. Proc IEEE-ICASSP-90:357–360.

    Google Scholar 

  • Spitzer MW, Semple MN (1993) Responses of inferior colliculus neurons to time-varying interaural phase disparity: effects of shifting the locus of virtual motion. J Neurophysiol 69:1245–1263.

    PubMed  CAS  Google Scholar 

  • Spitzer MW, Semple MN (1998) Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J Neurophysiol 80:3062–3076.

    PubMed  CAS  Google Scholar 

  • Srulovicz P, Goldstein JL (1983) A central spectrum model: a synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. J Acoust Soc Am 73:1266–1276.

    PubMed  CAS  Google Scholar 

  • Steeneken HJ, Houtgast T (1980) A physical method for measuring speech-transmission quality. J Acoust Soc Am 67:318–326.

    PubMed  CAS  Google Scholar 

  • Sterbing SJ, D’Angelo WR, Ostapoff EM, Kuwada S (2003) Effects of amplitude modulation on the coding of interaural time differences of low-frequency sounds in the inferior colliculus. I. Response properties. J Neurophysiol 90:2818–2826.

    CAS  Google Scholar 

  • Stern RM, Zeiberg AS, Trahiotis C (1988) Lateralization of complex binaural stimuli: a weighted-image model. J Acoust Soc Am 84:156–165.

    PubMed  CAS  Google Scholar 

  • Suga N, Ma X (2003) Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev 4:783–794.

    CAS  Google Scholar 

  • Tollin DJ, Yin TC (2002a) The coding of spatial location by single units in the lateral superior olive of the cat. I. Spatial receptive fields in azimuth. J Neurosci 22:1454–1467.

    CAS  Google Scholar 

  • Tollin DJ, Yin TC (2002b) The coding of spatial location by single units in the lateral superior olive of the cat. II. The determinants of spatial receptive fields in azimuth. J Neurosci 22:1468–1479.

    CAS  Google Scholar 

  • Tollin DJ, Populin LC, Yin TC (2004) Neural correlates of the precedence effect in the inferior colliculus of behaving cats. J Neurophysiol 92:3286–3297.

    PubMed  Google Scholar 

  • Voutsas K, Langner G, Adamy J, Ochse M (2005) A brain-like neural network for periodicity analysis. IEEE Trans Syst Man Cybern B Cybern 35:12–22.

    PubMed  Google Scholar 

  • Wiegrebe L, Meddis R (2004) The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus. J Acoust Soc Am 115:1207–1218.

    PubMed  Google Scholar 

  • Winer JA (2005) Three systems of descending projections to the inferior colliculus. In: Winer JA, Schreiner CE (eds), The Inferior Colliculus. New York: Springer, pp 231–247.

    Google Scholar 

  • Winer JA, Schreiner CE, eds (2005) The Inferior Colliculus. New York: Springer.

    Google Scholar 

  • Winter IM, Wiegrebe L, Patterson RD (2001) The temporal representation of the delay of iterated rippled noise in the ventral cochlear nucleus of the guinea-pig. J Physiol 537:553–566.

    PubMed  CAS  Google Scholar 

  • Wu SH, Ma CL, Sivaramakrishnan S, Oliver DL (2002) Synaptic modification in neurons of the central nucleus of the inferior colliculus. Hear Res 168:43–54.

    PubMed  Google Scholar 

  • Xia J, Brughera A, Colburn HS, Shinn-Cunningham BG (2009) Modeling physiological and psychophysical responses to precedence effect stimuli. Presented at 15th International Symposium on Hearing. Salamanca Spain.

    Google Scholar 

  • Yang L, Pollak GD (1998) Features of ipsilaterally evoked inhibition in the dorsal nucleus of the lateral lemniscus. Hear Res 122:125–141.

    PubMed  CAS  Google Scholar 

  • Yin TC (1994) Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat. J Neurosci 14:5170–5186.

    PubMed  CAS  Google Scholar 

  • Yin TC, Chan JC (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64:465–488.

    PubMed  CAS  Google Scholar 

  • Yin TC, Kuwada S (1983) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. J Neurophysiol 50:1020–1042.

    CAS  Google Scholar 

  • Yin TC, Chan JC, Carney LH (1987) Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. III. Evidence for cross-correlation. J Neurophysiol 58:562–583.

    CAS  Google Scholar 

  • Young ED, Davis KA (2001) Circuitry and function of the dorsal cochlear nucleus. In: Oertel D, Popper AN, Fay RR (eds), Integrative Functions in the Mammalian Auditory Pathway. New York: Springer 160–206.

    Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403.

    PubMed  CAS  Google Scholar 

  • Young ED, Spirou GA, Rice JJ, Voigt HF (1992) Neural organization and responses to complex stimuli in the dorsal cochlear nucleus. Philos Trans R Soc Lond B Biol Sci 336:407–413.

    PubMed  CAS  Google Scholar 

  • Zilany MS, Bruce IC (2006) Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. J Acoust Soc Am 120:1446–1466.

    PubMed  Google Scholar 

  • Zurek PM (1987) The precedence effect. In: Yost WA, Gourevitch G (eds), Directional Hearing. New York: Springer 85–105.

    Google Scholar 

Download references

Acknowledgment

We thank M. Slama, G.I. Wang, L. Wang, B. Wen, and Y Zhou for their comments on the manuscript, and G.I. Wang for help with figure preparation. Preparation of this chapter was supported by NIH grants DC002258 (Delgutte and Hancock) and DC05161 (Davis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Davis, K.A., Hancock, K.E., Delgutte, B. (2010). Computational Models of Inferior Colliculus Neurons. In: Meddis, R., Lopez-Poveda, E., Fay, R., Popper, A. (eds) Computational Models of the Auditory System. Springer Handbook of Auditory Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5934-8_6

Download citation

Publish with us

Policies and ethics