Skip to main content

The Auditory Cortex: The Final Frontier

  • Chapter
  • First Online:
Computational Models of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 35))

  • 1536 Accesses

Abstract

The auditory cortex consists of 10–15 interconnected areas or fields whose neurons receive a modest input from the thalamus and about 10–100 times more input from other auditory cortical areas and nonauditory cortical fields from the same and contralateral hemisphere. Modeling this conglomerate as a black box functional network model is potentially doable (Stephan et al. 2000), but that does not give us much insight into how individual cortical areas compute and the nature of the output from those areas to cognitive and motor systems. At the other end of the scale, there is the challenge of realistic modeling of the canonical cortical neural network that is typically based on primary visual cortex (Martin 2002). When implemented for primary auditory cortical columns this needs detailed modeling of 10–15 different cell types (Watts and Thomson 2005) with different ion channels and neural transmitter and modulatory systems; even such minimal circuits present daunting complexities. The main problem for the neuroscientist is of course to identify the computational problem that the auditory cortex has to solve. This chapter reviews the basic structural and functional elements for such models on the basis of what is currently known about auditory cortical function and processing. The emphasis here is on vocalizations, speech, and music. Some promising analytic and modeling approaches that have been proposed recently are discussed in light of two views of cortical function: as an information processing system and as a representational system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Aertsen AM, Johannesma PI (1981) A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli. Biol Cybern 42:145–156.

    PubMed  CAS  Google Scholar 

  • Aertsen AM, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity.” J Neurophysiol 61:900–917.

    PubMed  CAS  Google Scholar 

  • Aertsen A, Erb M, Palm G (1994) Dynamics of functional coupling in the cerebral-cortex – an attempt at a model-based interpretation. Physica D 75:103–128.

    Google Scholar 

  • Ahveninen J, Jääskelainen IP, Raij T, Bonmassar G, Devore S, Hämäläinen M, Levänen S, Lin FH, Sams M, Shinn-Cunningham BG, Witzel T, Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci U S A 103:14608–14613.

    PubMed  CAS  Google Scholar 

  • Alonso JM, Usrey WM, Reid RC (2001) Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J Neurosci 21:4002–4015.

    PubMed  CAS  Google Scholar 

  • Altmann CF, Bledowski C, Wibral M, Kaiser J (2007) Processing of location and pattern changes of natural sounds in the human auditory cortex. Neuroimage 35:1192–1200.

    PubMed  Google Scholar 

  • Barrett DJ, Hall DA (2006) Response preferences for “what” and “where” in human non-primary auditory cortex. Neuroimage 32:968–977.

    PubMed  Google Scholar 

  • Bendor D, Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161–1165.

    PubMed  CAS  Google Scholar 

  • Bendor D, Wang X (2006) Cortical representations of pitch in monkeys and humans. Curr Opin Neurobiol 16:391–399.

    PubMed  CAS  Google Scholar 

  • Bendor D, Wang X (2007) Differential neural coding of acoustic flutter within primate auditory cortex. Nat Neurosci 10:763–771.

    PubMed  CAS  Google Scholar 

  • Blake DT, Merzenich MM (2002) Changes of AI receptive fields with sound density. J Neurophysiol 88:3409–3420.

    PubMed  Google Scholar 

  • Borst A, Theunissen FE (1999) Information theory and neural coding. Nat Neurosci 2:947–957.

    PubMed  CAS  Google Scholar 

  • Braitenberg V (1974) Thoughts on the cerebral cortex. J Theor Biol 46:421–447.

    PubMed  CAS  Google Scholar 

  • Brosch M, Schreiner CE (1999) Correlations between neural discharges are related to receptive field properties in cat primary auditory cortex. Eur J Neurosci 11:3517–3530.

    PubMed  CAS  Google Scholar 

  • Chechik G, Anderson MJ, Bar-Yosef O, Young ED, Tishby N, Nelken I (2006) Reduction of information redundancy in the ascending auditory pathway. Neuron 51:359–368.

    PubMed  CAS  Google Scholar 

  • Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer ­functions and speech intelligibility. J Acoust Soc Am 106:2719–2732.

    PubMed  CAS  Google Scholar 

  • Chi T, Ru P, Shamma SA (2005) Multiresolution spectrotemporal analysis of complex sounds. J Acoust Soc Am 118:887–906.

    PubMed  Google Scholar 

  • Christianson GB, Sahani M, Linden JF (2008) The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields. J Neurosci 28:446–455.

    PubMed  CAS  Google Scholar 

  • Clarke S, de Ribaupierre F, Rouiller EM, de Ribaupierre Y (1993) Several neuronal and axonal types form long intrinsic connections in the cat primary auditory cortical field (AI). Anat Embryol (Berl) 188:117–138.

    CAS  Google Scholar 

  • Cooke M (1993) Modelling Auditory Processing and Organization. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • de Boer E, de Jongh HR (1978) On cochlear encoding: potentialities and limitations of the reverse-correlation technique. J Acoust Soc Am 63:115–135.

    PubMed  Google Scholar 

  • deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coord­ination of action-potential timing. Nature 381:610–613.

    PubMed  CAS  Google Scholar 

  • de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006) Thalamic connections of the ­auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 496:72–96.

    PubMed  Google Scholar 

  • Eggermont JJ (1992) Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation, and age. J Neurophysiol 68:1216–1228.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ (1993) Wiener and Volterra analyses applied to the auditory system. Hear Res 66:177–201.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ (1994) Neural interaction in cat primary auditory cortex II. Effects of sound stimulation. J Neurophysiol 71:246–270.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ (1995) Representation of a voice onset time continuum in primary auditory cortex of the cat. J Acoust Soc Am 98:911–920.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ (2000) Sound-induced synchronization of neural activity between and within three auditory cortical areas. J Neurophysiol 83:2708–2722.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ (2001) Between sound and perception: reviewing the search for a neural code. Hear Res 157:1–42.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ (2006) Properties of correlated neural activity clusters in cat auditory cortex resemble those of neural assemblies. J Neurophysiol 96:746–764.

    PubMed  Google Scholar 

  • Eggermont JJ, Komiya H (2000) Moderate noise trauma in juvenile cats results in profound ­cortical topographic map changes in adulthood. Hear Res 142:89–101.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ, Smith GM (1990) Characterizing auditory neurons using the Wigner and Rihacek distributions: a comparison. J Acoust Soc Am 87:246–259.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ, Aertsen AM, Hermes DJ, Johannesma PI (1981) Spectro-temporal characterization of auditory neurons: redundant or necessary. Hear Res 5:109–121.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ, Aertsen AM, Johannesma PI (1983a) Prediction of the responses of auditory ­neurons in the midbrain of the grass frog based on the spectro-temporal receptive field. Hear Res 10:191–202.

    PubMed  CAS  Google Scholar 

  • Eggermont JJ, Johannesma PM, Aertsen AM (1983b) Reverse-correlation methods in auditory research. Q Rev Biophys 16:341–414.

    PubMed  CAS  Google Scholar 

  • Elhilali M, Fritz JB, Klein DJ, Simon JZ, Shamma SA (2004) Dynamics of precise spike timing in primary auditory cortex. J Neurosci 24:1159–1172.

    PubMed  CAS  Google Scholar 

  • Fishbach A, Nelken I, Yeshurun Y (2001) Auditory edge detection: a neural model for ­physiological and psychoacoustical responses to amplitude transients. J Neurophysiol 85:2303–2323.

    PubMed  CAS  Google Scholar 

  • Fishbach A, Yeshurun Y, Nelken I (2003) Neural model for physiological responses to frequency and amplitude transitions uncovers topographical order in the auditory cortex. J Neurophysiol 90:3663–3678.

    PubMed  Google Scholar 

  • Friederici AD (2005) Neurophysiological markers of early language acquisition: from syllables to sentences. Trends Cogn Sci 9:481–488.

    PubMed  Google Scholar 

  • Gehr DD, Komiya H, Eggermont JJ (2000) Neuronal responses in cat primary auditory cortex to natural and altered species-specific calls. Hear Res 150:27–42.

    PubMed  CAS  Google Scholar 

  • Gerstein GL, Kirkland KL (2001) Neural assemblies: technical issues, analysis, and modeling. Neural Netw 14:589–598.

    PubMed  CAS  Google Scholar 

  • Gourévitch B, Eggermont JJ (2007a) Evaluating information transfer between auditory cortical neurons. J Neurophysiol 97:2533–2543.

    PubMed  Google Scholar 

  • Gourévitch B, Eggermont JJ (2007b) Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex. J Neurophysiol 97:144–158.

    PubMed  Google Scholar 

  • Gourévitch B, Eggermont JJ (2008) Spectrotemporal sound density dependent long-term adaptation in cat primary auditory cortex. Eur J Neurosci 27:3310–3321.

    PubMed  Google Scholar 

  • Gourévitch B, Noreña A, Shaw G, Eggermont JJ (2009) Spectro-temporal receptive fields in anesthetized cat primary auditory cortex are context dependent. Cereb Cortex 19(6):1448–1461.

    PubMed  Google Scholar 

  • Grande LA, Kinney GA, Miracle GL, Spain WJ (2004) Dynamic influences on coincidence ­detection in neocortical pyramidal neurons. J Neurosci 24:1839–1851.

    PubMed  CAS  Google Scholar 

  • Grün S, Diesmann M, Aertsen A (2002) Unitary events in multiple single-neuron spiking activity: II. Nonstationary data. Neural Comput 14:81–119.

    PubMed  Google Scholar 

  • Hermes DJ, Aertsen AM, Johannesma PI, Eggermont JJ (1981) Spectro-temporal characteristics of single units in the auditory midbrain of the lightly anaesthetised grass frog (Rana temporaria L) investigated with noise stimuli. Hear Res 5:147–178.

    PubMed  CAS  Google Scholar 

  • Hickok G, Poeppel D (2000) Towards a functional neuroanatomy of speech perception. Trends Cogn Sci 4:131–138.

    PubMed  Google Scholar 

  • Holmgren CD, Zilberter Y (2001) Coincident spiking activity induces long-term changes in inhibition of neocortical pyramidal cells. J Neurosci 21:8270–8277.

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154.

    PubMed  CAS  Google Scholar 

  • Itoh K, Suwazono S, Arao H, Miyazaki K, Nakada T (2005) Electrophysiological correlates of absolute pitch and relative pitch. Cereb Cortex 15:760–769.

    PubMed  Google Scholar 

  • Johannesma PIM, Aertsen A, van den Boogaard H, Eggermont JJ, Epping W (1986) From synchrony to harmony: ideas on the function of neural assembles and on the interpretation of neural synchrony. In: Palm G, Aertsen A (eds), Brain Theory, Berlin: Springer, pp. 25–47.

    Google Scholar 

  • Kaas JH (1987) The organization of neocortex in mammals: implications for theories of brain function. Ann Rev Psychol 38:129–151.

    CAS  Google Scholar 

  • Kadia SC, Wang X (2003) Spectral integration in A1 of awake primates: neurons with single- and multipeaked tuning characteristics. J Neurophysiol 89:1603–1622.

    PubMed  Google Scholar 

  • Karmarkar UR, Buonomano DV (2002) A model of spike-timing dependent plasticity: one or two coincidence detectors? J Neurophysiol 88:507–513.

    PubMed  Google Scholar 

  • Keenan JP, Thangaraj V, Halpern AR, Schlaug G (2001) Absolute pitch and planum temporale. Neuroimage 14:1402–1408.

    PubMed  CAS  Google Scholar 

  • Keuroghlian AS, Knudese EI (2007) Adaptive auditory plasticity in developing and adult animals. Prog Neurobiol 32:109–121.

    Google Scholar 

  • Kimpo RR, Theunissen FE, Doupe AJ (2003) Propagation of correlated activity through multiple stages of a neural circuit. J Neurosci 23:5750–5761.

    PubMed  CAS  Google Scholar 

  • Kistler WM, Gerstner W (2002) Stable propagation of activity pulses in populations of spiking neurons. Neural Comput 14:987–997.

    PubMed  Google Scholar 

  • Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design. J Comput Neurosci 9:85–111.

    PubMed  CAS  Google Scholar 

  • Klein DJ, Simon JZ, Depireux DA, Shamma SA (2006) Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex. J Comput Neurosci 20:111–136.

    PubMed  Google Scholar 

  • Koelsch S, Siebel WA (2005) Towards a neural basis of music perception. Trends Cogn Sci 9:578–584.

    PubMed  Google Scholar 

  • Koenderink JJ (1984) Simultaneous order in nervous nets from a functional standpoint. Biol Cybern 50:35–41.

    PubMed  CAS  Google Scholar 

  • Kral A, Eggermont JJ (2007) What’s to lose and what’s to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res Rev 56:259–269.

    PubMed  Google Scholar 

  • Lee CC, Imaizumi K, Schreiner CE, Winer JA (2004a) Concurrent tonotopic processing streams in auditory cortex. Cereb Cortex 14:441–451.

    PubMed  Google Scholar 

  • Lee CC, Schreiner CE, Imaizumi K, Winer JA (2004b) Tonotopic and heterotopic projection systems in physiologically defined auditory cortex. Neuroscience 128:871–887.

    PubMed  CAS  Google Scholar 

  • Lewicki MS (2002) Efficient coding of natural sounds. Nat Neurosci 5:356–363.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1988) Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. J Neurophysiol 60:1779–1798.

    PubMed  CAS  Google Scholar 

  • Liégeois-Chauvel C, de Graaf JB, Laguitton V, Chauvel P (1999) Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cereb Cortex 9:484–496.

    PubMed  Google Scholar 

  • Liégeois-Chauvel C, Giraud K, Badier JM, Marquis P, Chauvel P (2001) Intracerebral evoked potentials in pitch perception reveal a functional asymmetry of the human auditory cortex. Ann N Y Acad Sci 930:117–132.

    PubMed  Google Scholar 

  • Limb CJ (2006) Structural and functional neural correlates of music perception. Anat Rec A Discov Mol Cell Evol Biol 288:435–446.

    PubMed  Google Scholar 

  • Linden JF, Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cereb Cortex 13:83–89.

    PubMed  Google Scholar 

  • Lomber SG, Malhotra S (2008) Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nat Neurosci 11:609–616.

    PubMed  CAS  Google Scholar 

  • Lomber SG, Malhotra S, Hall AJ (2007) Functional specialization in non-primary auditory cortex of the cat: areal and laminar contributions to sound localization. Hear Res 229:31–45.

    PubMed  Google Scholar 

  • London M, Schreibman A, Hausser M, Larkum ME, Segev I (2002) The information efficacy of a synapse. Nat Neurosci 5:332–340.

    PubMed  CAS  Google Scholar 

  • Lu T, Liang L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4:1131–1138.

    PubMed  CAS  Google Scholar 

  • Luo F, Wang Q, Kashani A, Yan J (2008) Corticofugal modulation of initial sound processing in the brain. J Neurosci 28:11615–11621.

    PubMed  CAS  Google Scholar 

  • Malhotra S, Hall AJ, Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J Neurophysiol 92:1625–1643.

    PubMed  Google Scholar 

  • Martin KAC (2002) Microcircuits in visual cortex. Curr Opin Neurobiol 12:418–425.

    PubMed  CAS  Google Scholar 

  • Miller LM, Escabi MA, Read HL, Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160.

    PubMed  CAS  Google Scholar 

  • Miller LM, Escabi MA, Read HL, Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. J Neurophysiol 87:516–527.

    PubMed  Google Scholar 

  • Noreña AJ, Eggermont JJ (2005) Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci 25:699–705.

    PubMed  Google Scholar 

  • Noreña AJ, Gourévitch B, Aizawa N, Eggermont JJ (2006) Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nat Neurosci 9:932–939.

    PubMed  Google Scholar 

  • Norena AJ, Gourévitch B, Pienkowski M, Shaw G, Eggermont JJ (2008) Increasing spectro-temporal sound density reveals an octave-based organization in cat primary auditory cortex J Neurosci 28:8885–8896.

    CAS  Google Scholar 

  • Oswald AM, Schiff ML, Reyes AD (2006) Synaptic mechanisms underlying auditory processing. Curr Opin Neurobiol 16:371–376.

    PubMed  CAS  Google Scholar 

  • Palm G, Pöpel B (1985) Volterra representation and Wiener-like identification of nonlinear-­systems – scope and limitations. Q Rev Biophys 18:135–164.

    PubMed  CAS  Google Scholar 

  • Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776.

    PubMed  CAS  Google Scholar 

  • Phillips DP (1993) Representation of acoustic events in the primary auditory cortex. J Exp Psychol Hum Percept Perform 19:203–216.

    PubMed  CAS  Google Scholar 

  • Picton TW, Alain C, Otten L, Ritter W, Achim A (2000) Mismatch negativity: different water in the same river. Audiol Neurootol 5:111–139.

    PubMed  CAS  Google Scholar 

  • Pouget A, Dayan P, Zemel R (2000) Information processing with population codes. Nat Rev Neurosci 1:125–132.

    PubMed  CAS  Google Scholar 

  • Rajan R, Irvine DR, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 338:17–49.

    PubMed  CAS  Google Scholar 

  • Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations in the ­effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF (eds), Classical Conditioning. II. Current Research and Theories. New York: Appleton-Century-Crofts, pp. 64–99.

    Google Scholar 

  • Reyes AD (2003) Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat Neurosci 6:593–599.

    PubMed  CAS  Google Scholar 

  • Robertson D, Irvine DR (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471.

    PubMed  CAS  Google Scholar 

  • Rosen S (1992) Temporal information in speech: acoustic, auditory and linguistic aspects. Philos Trans R Soc Lond B Biol Sci 336:367–373.

    PubMed  CAS  Google Scholar 

  • Ross D, Choi J, Purves D (2007) Musical intervals in speech. Proc Natl Acad Sci U S A. 104:9852–9857.

    Google Scholar 

  • Rothman JS, Cathala L, Steuber V, Silver RA (2009) Synaptic depression enables neuronal gain control. Nature 457:1015–1018.

    PubMed  CAS  Google Scholar 

  • Rudolph M, Destexhe A (2003) Tuning neocortical pyramidal neurons between integrators and coincidence detectors. J Comput Neurosci 14:239–251.

    PubMed  Google Scholar 

  • Schiff SJ, Jerger K, Duong DH, Chang T, Spano ML, Ditto WL (1994) Controlling chaos in the brain. Nature 370:615–620.

    PubMed  CAS  Google Scholar 

  • Schneidman E, Berry MJ II, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440:1007–1012.

    PubMed  CAS  Google Scholar 

  • Schnupp JW, Hall TM, Kokelaar RF, Ahmed B (2006) Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. J Neurosci 26:4785–4795.

    PubMed  CAS  Google Scholar 

  • Shamma SA (1996) Auditory cortical representation of complex acoustic spectra as inferred from the ripple analysis method. Network Comp Neural Syst 7:439–476.

    Google Scholar 

  • Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304.

    PubMed  CAS  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586.

    PubMed  CAS  Google Scholar 

  • Singh NC, Theunissen FE (2003) Modulation spectra of natural sounds and ethological theories of auditory processing. J Acoust Soc Am 114:3394–3411.

    PubMed  Google Scholar 

  • Sjöström PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39:641–654.

    PubMed  Google Scholar 

  • Smith PH, Populin LC (2001) Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. J Comp Neurol 436:508–519.

    PubMed  CAS  Google Scholar 

  • Spangler KM, Warr WB (1991) The descending auditory system. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW (eds), Neurobiology of Hearing the Central Auditory System. New York: Raven, pp. 27–45.

    Google Scholar 

  • Stephan KE, Hilgetag CC, Burns GA, O’Neill MA, Young MP, Kötter R. (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci 355:111–126.

    PubMed  CAS  Google Scholar 

  • Suga N (1989) Principles of auditory information-processing derived from neuroethology. J Exp Biol 146:277–286.

    PubMed  CAS  Google Scholar 

  • Takeuchi AH, Hulse SH (1993) Absolute pitch. Psychol Bull 113:345–361.

    PubMed  CAS  Google Scholar 

  • Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J Neurosci 20:2315–2331.

    PubMed  CAS  Google Scholar 

  • Theunissen FE, Amin N, Shaevitz SS, Woolley SM, Fremouw T, Hauber ME (2004) Song selectivity in the song system and in the auditory forebrain. Ann N Y Acad Sci 1016:222–245.

    PubMed  Google Scholar 

  • Tomita M, Eggermont JJ (2005) Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex. J Neurophysiol 93:378–392.

    PubMed  Google Scholar 

  • Ts’o DY, Gilbert CD, Wiesel TN (1986) Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6:1160–1170.

    PubMed  Google Scholar 

  • Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A (1995) Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373:515–518.

    PubMed  CAS  Google Scholar 

  • Valentine PA, Eggermont JJ (2004) Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex. Hear Res 196:119–133.

    PubMed  Google Scholar 

  • Villa AE, Rouiller EM, Simm GM, Zurita P, de Ribaupierre Y, de Ribaupierre F (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res 86:506–517.

    PubMed  CAS  Google Scholar 

  • von der Malsburg C (1995) Binding in models of perception and brain function. Curr Opin Neurobiol 5:520–526.

    PubMed  Google Scholar 

  • Wallace MN, Kitzes LM, Jones EG (1991) Intrinsic inter- and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex. Exp Brain Res 86:527–544.

    PubMed  CAS  Google Scholar 

  • Wang X, Merzenich MM, Beitel R, Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 74:2685–2706.

    PubMed  CAS  Google Scholar 

  • Wang X, Lu T, Snider RK, Liang L (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346.

    PubMed  CAS  Google Scholar 

  • Watts J, Thomson AM (2005) Excitatory and inhibitory connections show selectivity in the neocortex. J Physiol 562:89–97.

    PubMed  CAS  Google Scholar 

  • Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445.

    PubMed  CAS  Google Scholar 

  • Werner G, Mountcastle VB (1965) Neural activity in mechanoreceptive cutaneous afferents: stimulus-response relations, Weber functions, and information Transmission. J Neurophysiol 28:359–397.

    PubMed  CAS  Google Scholar 

  • Winer JA, Lee CC (2007) The distributed auditory cortex. Hear Res 229:3–13.

    PubMed  Google Scholar 

  • Yan J, Ehret G (2001) Corticofugal reorganization of the midbrain tonotopic map in mice. Neuroreport 12:3313–3316.

    PubMed  CAS  Google Scholar 

  • Yan W, Suga N (1998) Corticofugal modulation of the midbrain frequency map in the bat auditory system. Nat Neurosci 1:54–58.

    PubMed  CAS  Google Scholar 

  • Yan J, Zhang Y, Ehret G (2005) Corticofugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice. J Neurophysiol 93:71–83.

    PubMed  Google Scholar 

  • Zatorre RJ (2001) Neural specializations for tonal processing. Ann N Y Acad Sci 930:193–210.

    PubMed  CAS  Google Scholar 

  • Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46.

    PubMed  Google Scholar 

  • Zhang Y, Suga N, Yan J (1997) Corticofugal modulation of frequency processing in bat auditory system. Nature 387:900–903.

    PubMed  CAS  Google Scholar 

  • Zheng XY, Henderson D, McFadden SL, Ding DL, Salvi RJ (1999) Auditory nerve fiber responses following chronic cochlear de-efferentation. J Comp Neurol 406:72–86.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alberta Heritage Foundation for Medical Research, the National Sciences and Engineering Research Council of Canada, a Canadian Institutes of Health – New Emerging Team grant, and the Campbell McLaurin Chair for Hearing Deficiencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos J. Eggermont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Eggermont, J.J. (2010). The Auditory Cortex: The Final Frontier. In: Meddis, R., Lopez-Poveda, E., Fay, R., Popper, A. (eds) Computational Models of the Auditory System. Springer Handbook of Auditory Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5934-8_5

Download citation

Publish with us

Policies and ethics