Skip to main content

The Cochlear Nucleus: The New Frontier

  • Chapter
  • First Online:
Computational Models of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 35))

Abstract

Paraphrasing Lord Kelvin, “If you can’t make a model, you didn’t understand.” Conceptual models of the neuronal circuitry within the auditory brainstem have been around for a long time. With the advent of supercomputers and the ubiquity of laptops, computational modeling these days is relatively common.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

two-dimensional

AM:

amplitude-modulated

AN:

auditory nerve

AVCN:

anteroventral cochlear nucleus

b K , B :

sensitivity to potassium conductance

BBN:

broad-band noise

BF:

best frequency

BW:

bandwidth

BWA→B :

bandwidth of cell group A sending connections to cell B

c:

threshold sensitivity (0–1)

chop-S:

chopper-sustained

chop-T:

chopper-transient

CA→B :

center frequency offset from cell group A to cell B

CN:

cochlear nucleus

dB SPL:

decibels sound pressure level

DCN:

dorsal cochlear nucleus

DSI:

depolarization-induced suppression of inhibition

E:

neuron transmembrane potential

Eex :

excitatory reversal potential

Ein :

inhibitory reversal potential

E K , EK :

potassium reversal potential

ES:

prior soma potential

g AB :

conductance of the synaptic connection from cell A to B

gex :

normalized excitatory synaptic conductance

gin :

normalized inhibitory synaptic conductance

gk :

normalized potassium conductance

G:

resting conductance

Gex :

excitatory synaptic conductance

Gin :

inhibitory synaptic conductance

G k , GK :

potassium conductance

HRP:

horseradish peroxidase

HRTF:

head-related transfer function

Ih :

a Ca+-sensitive, hyperpolarization-activated inward rectifier

I–V:

current-voltage

I2-cells:

inhibitory interneurons with type II unit RMs

ISIH:

interspike interval histogram

KLT :

low-threshold K+

LTD:

long-term depression

LTP:

long-term potentiation

N AB :

number of cell A connections to cell B

On:

Onset

On-C:

onset-chopper

On-I:

ideal onset

On-L:

onset with late activity

P-cells:

principal cells

PL:

Primarylike

Pri-N:

primarylike-with-notch

PS:

potential in soma

PSTH:

peristimulus time histogram

PVCN:

posterioventral cochlear nucleus

R–C:

resistance-capacitance

RM:

response map

S:

spiking variable indicating whether a cell has fired

SA :

input spike from cell A

SpAc:

spontaneous activity

SC:

magnitude of step current injected into a point neuron

SCN:

the input current

SR:

spontaneous rate

TGK:

refractory time constant

TH:

neuron threshold

TH0:

initial neuron threshold

TMEM:

membrane time constant

TTH:

time constant for accommodation

VCN:

ventral cochlear nucleus

Vm :

membrane potential relative to rest

W-cells:

wideband inhibitors

θ:

spike threshold voltage

σ:

conductance step

σ AB :

the connection strength from cell A to cell B

τ:

time constant

τ AB :

time constant of synaptic connection from cell A to cell B

τK :

potassium time constant

τ m :

membrane time constant

References

  • Arle JE, Kim DO (1991) Neural modeling of intrinsic and spike-discharge properties of cochlear nucleus neurons. Biol Cybern 64:273–283.

    Article  PubMed  CAS  Google Scholar 

  • Bahmer A, Langner G (2006) Oscillating neurons in the cochlear nucleus: II. Simulation results. Biol Cybern 95:381–392.

    Article  Google Scholar 

  • Bahmer A, Langner G (2008) A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons. Biol Cybern doi: 10.1007/s00422–008–0276–3.

    PubMed  Google Scholar 

  • Banks MI, Sachs MB (1991) Regularity analysis in a compartmental model of chopper units in the anteroventral cochlear nucleus. J Neurophysiol 65:606–629.

    PubMed  CAS  Google Scholar 

  • Cai Y, Walsh EJ, McGee J (1997) Mechanisms of onset responses in octopus cells of the cochlear nucleus: implications of a model. J Neurophysiol 78:872–883.

    PubMed  CAS  Google Scholar 

  • Cai Y, McGee J, Walsh EJ (2000) Contributions of ion conductances to the onset responses of octopus cells in the ventral cochlear nucleus: simulation results. J Neurophysiol 83:301–314.

    PubMed  CAS  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417.

    Article  PubMed  CAS  Google Scholar 

  • Davis KA, Voigt HF (1994) Neural modeling of the dorsal cochlear nucleus: cross-correlation analysis of short-duration tone-burst responses. Biol Cybern 71:511–521.

    Article  PubMed  CAS  Google Scholar 

  • Davis KA, Voigt HF (1996) Computer simulation of shared input among projection neurons in the dorsal cochlear nucleus. Biol Cybern 74:413–425.

    Article  PubMed  CAS  Google Scholar 

  • Davis KA, Voigt HF (1997) Evidence of stimulus-dependent correlated activity in the dorsal cochlear nucleus of decerebrate gerbils. J Neurophysiol 78:229–247.

    PubMed  CAS  Google Scholar 

  • Davis KA, Gdowski GT, Voigt HF (1995) A statistically based method to generate response maps objectively. J Neurosci Methods 57:107–118.

    Article  PubMed  CAS  Google Scholar 

  • Davis KA, Ding J, Benson TE, Voigt HF (1996) Response properties of units in the dorsal cochlear nucleus of unanesthetized decerebrate gerbil. J Neurophysiol 75:1411–1431.

    PubMed  CAS  Google Scholar 

  • Ding J, Benson TE, Voigt HF (1999) Acoustic and current-pulse responses of identified neurons in the dorsal cochlear nucleus of unanesthetized, decerebrate gerbils. J Neurophysiol 82:3434–3457.

    PubMed  CAS  Google Scholar 

  • Eager MA, Grayden DB, Burkitt A, Meffin H (2004) A neural circuit model of the ventral cochlear nucleus. In: Proceedings of the 10th Australian International Conference on Speech Science & Technology, pp. 539–544.

    Google Scholar 

  • Ferragamo MJ, Oertel D (1998) Shaping of synaptic responses and action potentials in octopus cells. In: Proceedings of Assoc Res Otolaryngol Abstr 21:96.

    Google Scholar 

  • Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibres in cat. A study of a feedback system. Acta Physiol Scand Suppl 189:1–68.

    CAS  Google Scholar 

  • Fujino K, Oertel D (2003) Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proc Natl Acad Sci USA 100:265–270.

    Article  PubMed  CAS  Google Scholar 

  • Golding NL, Robertson D, Oertel D (1995) Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. J Neurosci 15:3138–3153.

    PubMed  CAS  Google Scholar 

  • Golding NL, Ferragamo MJ, Oertel D (1999) Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus. J Neurosci 19:2897–2905.

    PubMed  CAS  Google Scholar 

  • Hancock KE, Voigt HF (1999) Wideband inhibition of dorsal cochlear nucleus type IV units in cat: a computational model. Ann Biomed Eng 27:73–87.

    Article  PubMed  CAS  Google Scholar 

  • Hancock KE, Davis KA, Voigt HF (1997) Modeling inhibition of type II units in the dorsal cochlear nucleus. Biol Cybern 76:419–428.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins HL, McMullen TA, Popper AN, et al., eds (1996) Auditory Computation. New York: Springer Verlag.

    Google Scholar 

  • Hemmert W, Holmberg M, Gerber M (2003) Coding of auditory information into nerve-action potentials. In: Fortschritte der Akustik, Oldenburg. Deutsche Gesellschaft für Akustik e.v, pp. 770–771.

    Google Scholar 

  • Hewitt MJ, Meddis R (1991) An evaluation of eight computer models of mammalian inner hair-cell function. J Acoust Soc Am 90:904–917.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt MJ, Meddis R (1993) Regularity of cochlear nucleus stellate cells: a computational modeling study. J Acoust Soc Am 93:3390–3399.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt MJ, Meddis R (1995) A computer model of dorsal cochlear nucleus pyramidal cells: intrinsic membrane properties. J Acoust Soc Am 97:2405–2413.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt MJ, Meddis R, Shackleton TM (1992) A computer model of a cochlear-nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli. J Acoust Soc Am 91:2096–2109.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544.

    PubMed  CAS  Google Scholar 

  • Holmberg M, Hemmert W (2004) An auditory model for coding speech into nerve-action potentials. In: Proceedings of the Joint Congress CFA/DAGA, Strasbourg, France, March 18–20, 2003, pp. 773–774.

    Google Scholar 

  • Kalluri S, Delgutte B (2003a) Mathematical models of cochlear nucleus onset neurons: II. model with dynamic spike-blocking state. J Comput Neurosci 14:91–110.

    Article  PubMed  Google Scholar 

  • Kalluri S, Delgutte B (2003b) Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. J Comput Neurosci 14:71–90.

    Google Scholar 

  • Kane EC (1973) Octopus cells in the cochlear nucleus of the cat: heterotypic synapses upon homeotypic neurons. Int J Neurosci 5:251–279.

    Article  PubMed  CAS  Google Scholar 

  • Kane EC (1974) Synaptic organization in the dorsal cochlear nucleus of the cat: a light and electron microscopic study. J Comp Neurol 155:301–329.

    Article  PubMed  CAS  Google Scholar 

  • Kane ES (1977) Descending inputs to the octopus cell area of the cat cochlear nucleus: an electron microscopic study. J Comp Neurol 173:337–354.

    Article  PubMed  CAS  Google Scholar 

  • Kanold PO, Manis PB (1999) Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. J Neurosci 19:2195–2208.

    PubMed  CAS  Google Scholar 

  • Kim DO, D’Angelo WR (2000) Computational model for the bushy cell of the cochlear nucleus. Neurocomputing 32–33:189–196.

    Article  Google Scholar 

  • Kipke DR, Levy KL (1997) Sensitivity of the cochlear nucleus octopus cell to synaptic and membrane properties: a modeling study. J Acoust Soc Am 102:403–412.

    Article  Google Scholar 

  • Levy KL, Kipke DR (1997) A computational model of the cochlear nucleus octopus cell. J Acoust Soc Am 102:391–402.

    Article  Google Scholar 

  • Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24:17–36.

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó R (1981) The Primary Acoustic Nuclei. New York: Raven Press.

    Google Scholar 

  • MacGregor RJ (1987) Neural and Brain Modeling. San Diego: Academic Press.

    Google Scholar 

  • MacGregor RJ (1993) Theoretical Mechanics of Biological Neural Networks. San Diego: Academic Press.

    Google Scholar 

  • Mailleux P, Vanderhaeghen JJ (1992) Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 48:655–668.

    Article  PubMed  CAS  Google Scholar 

  • Manis PB (1990) Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro. J Neurosci 10:2338–2351.

    PubMed  CAS  Google Scholar 

  • Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880.

    PubMed  CAS  Google Scholar 

  • Nelken I, Young ED (1994) Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. J Neurophysiol 71:2446–2462.

    PubMed  CAS  Google Scholar 

  • Oertel D, Young ED (2004) What’s a cerebellar circuit doing in the auditory system? Trends Neurosci 27:104–110.

    Article  PubMed  CAS  Google Scholar 

  • Oertel D, Wu SH, Garb MW, Dizack C (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurol 295:136–154.

    Article  PubMed  CAS  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453–484.

    Article  PubMed  CAS  Google Scholar 

  • Osen KK (1970) Course and termination of the primary afferents in the cochlear nuclei of the cat. An experimental anatomical study. Arch Ital Biol 108:21–51.

    CAS  Google Scholar 

  • Osen KK, Mugnaini E (1981) Neuronal circuits in the dorsal cochlear nucleus. In: Syka J, Aitkin L (ed), Neuronal Mechanisms in Hearing. New York: Plenum Press, pp. 119–125.

    Chapter  Google Scholar 

  • Ostapoff EM, Feng JJ, Morest DK (1994) A physiological and structural study of neuron types in the cochlear nucleus. II. Neuron types and their structural correlation with response properties. J Comp Neurol 346:19–42.

    CAS  Google Scholar 

  • Parsons JE, Lim E, Voigt HF (2001) Type III units in the gerbil dorsal cochlear nucleus may be spectral notch detectors. Ann Biomed Eng 29:887–896.

    Article  PubMed  CAS  Google Scholar 

  • Pathmanathan JS, Kim DO (2001) A computational model for the AVCN marginal shell with medial olivocochlear feedback: generation of a wide dynamic range. Neurocomputing 38–40:807–815.

    Article  Google Scholar 

  • Pont MJ, Damper RI (1991) A computational model of afferent neural activity from the cochlea to the dorsal acoustic stria. J Acoust Soc Am 89:1213–1228.

    Article  PubMed  CAS  Google Scholar 

  • Popper AN, Fay RR (Eds.) (1992) The Mammalian Auditory Pathway: Neurophysiology. New York : Springer Verlag.

    Google Scholar 

  • Reed MC, Blum JJ (1995) A computational model for signal processing by the dorsal cochlear nucleus. I. Responses to pure tones. J Acoust Soc Am 97:425–438.

    CAS  Google Scholar 

  • Reed MC, Blum JJ (1997) Model calculations of the effects of wide-band inhibitors in the dorsal cochlear nucleus. J Acoust Soc Am 102:2238–2244.

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS, Oertel D, Smith PH (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213:448–463.

    Article  PubMed  CAS  Google Scholar 

  • Rothman JS, Manis PB (2003) The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89:3097–3113.

    Article  PubMed  CAS  Google Scholar 

  • Rothman JS, Young ED, Manis PB (1993) Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J Neurophysiol 70:2562–2583.

    PubMed  CAS  Google Scholar 

  • Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282:595–616.

    Article  PubMed  CAS  Google Scholar 

  • Spirou GA, Young ED (1991) Organization of dorsal cochlear nucleus type IV unit response maps and their relationship to activation by bandlimited noise. J Neurophysiol 66:1750–1768.

    PubMed  CAS  Google Scholar 

  • Straiker A, Mackie K (2006) Cannabinoids, electrophysiology, and retrograde messengers: challenges for the next 5 years. Aaps J 8:E272–276.

    PubMed  CAS  Google Scholar 

  • Tzounopoulos T (2006) Mechanisms underlying cell-specific synaptic plasticity in the dorsal cochlear nucleus. In: Proceedings of Assoc Res Otolaryngol Abstr 208.

    Google Scholar 

  • van Schaik A, Fragnière E, Vittoz E (1996) An analogue electronic model of ventral cochlear nucleus neurons. In: Proceedings of the Fifth International Conference on Microelectronics for Neural Networks and Fuzzy Systems, Los Alamitos, CA, February 12–14, 1996, pp. 52–59.

    Google Scholar 

  • Voigt HF, Young ED (1980) Evidence of inhibitory interactions between neurons in dorsal cochlear nucleus. J Neurophysiol 44:76–96.

    PubMed  CAS  Google Scholar 

  • Voigt HF, Young ED (1985) Stimulus dependent neural correlation: an example from the cochlear nucleus. Exp Brain Res 60:594–598.

    Article  PubMed  CAS  Google Scholar 

  • Voigt HF, Young ED (1988) Neural correlations in the dorsal cochlear nucleus: pairs of units with similar response properties. J Neurophysiol 59:1014–1032.

    PubMed  CAS  Google Scholar 

  • Voigt HF, Davis KA (1996) Computation of neural correlations in dorsal cochlear nucleus. Adv Speech Hear Lang Process 3:351–375.

    Google Scholar 

  • Webster DB, Popper AN, Fay RR, eds (1992) The Mammalian Auditory Pathway: Neuroanatomy. New York : Springer Verlag.

    Google Scholar 

  • Wickesberg RE, Oertel D (1988) Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice. J Comp Neurol 268:389–399.

    Article  PubMed  CAS  Google Scholar 

  • Young ED (1980) Identification of response properties of ascending axons from dorsal cochlear nucleus. Brain Res 200:23–37.

    Article  PubMed  CAS  Google Scholar 

  • Young ED, Brownell WE (1976) Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J Neurophysiol 39:282–300.

    PubMed  CAS  Google Scholar 

  • Young ED, Voigt HF (1982) Response properties of type II and type III units in dorsal cochlear nucleus. Hear Res 6:153–169.

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Voigt HF (2006a) A modeling study of notch noise responses of type III units in the gerbil dorsal cochlear nucleus. Ann Biomed Eng 34:1935–1946.

    Article  PubMed  Google Scholar 

  • Zheng X, Voigt HF (2006b) Computational model of response maps in the dorsal cochlear nucleus. Biol Cybern 95:233–242.

    Article  PubMed  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the intellectual and programming contributions to the DCN computational model by Drs. K. Davis, K. Hancock and T. McMullen, and the financial support over the years by NIH and Boston University’s Hearing Research Center and Biomedical Engineering department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert F. Voigt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Voigt, H.F., Zheng, X. (2010). The Cochlear Nucleus: The New Frontier. In: Meddis, R., Lopez-Poveda, E., Fay, R., Popper, A. (eds) Computational Models of the Auditory System. Springer Handbook of Auditory Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5934-8_3

Download citation

Publish with us

Policies and ethics