Skip to main content

Auditory Periphery: From Pinna to Auditory Nerve

  • Chapter
  • First Online:
Book cover Computational Models of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 35))

Abstract

The auditory periphery begins at the point where the pressure wave meets the ear and it ends at the auditory nerve (AN). The physical distance is short but the sound is transformed almost beyond recognition before it reaches the end of its journey. The process presents a formidable challenge to modelers, but considerable progress has been made over recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alternating current

AN:

Auditory nerve

BF:

Best frequency

BM:

Basilar membrane

BW:

Bandwidth

CF:

Characteristic frequency

dB:

Decibel

DC:

Direct current

DP:

Distortion product

DRNL:

Dual-resonance nonlinear

f C :

Center frequency

FFT:

Fast Fourier transform

FIR:

Finite impulse response

HRIR:

Head-related impulse response

HRTF:

Head-related transfer function

HSR:

High-spontaneous rate

IHC:

Inner hair cell

IIR:

Infinite impulse response

kHz:

KiloHertz

LSR:

Low-spontaneous rate

MBPNL:

Multiple bandpass nonlinear

ms:

Milliseconds

OHC:

Outer hair cell

SPL:

Sound pressure level

References

  • Aertsen AM, Johannesma PI (1980) Spectro-temporal receptive fields of auditory neurons in the grassfrog: I. Characterization of tonal and natural stimuli. Biol Cybern 38:223–234.

    Google Scholar 

  • Aibara R, Welsch JT, Puria S, Goode RL (2001) Human middle-ear transfer function and cochlear input impedance. Hear Res 152:100–109.

    PubMed  CAS  Google Scholar 

  • Algazi VR, Duda RO, Morrison RP, Thompson DM (2001) Structural composition and decomposition of HRTFs. In: Proceedings of 2001 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. New Paltz, NY, pp. 103–106.

    Google Scholar 

  • Augustine GJ, Charlton MP, Smith SJ (1985) Calcium entry into voltage-clamped pre-synaptic terminals of squid. J Physiol 367:143–162.

    PubMed  CAS  Google Scholar 

  • Bacon SP (2004) Overview of auditory compression. In: Bacon SP, Fay RR, Popper AN (eds), Compression: From Cochlea to Cochlear Implants. New York: Springer, pp. 1–17.

    Google Scholar 

  • Burkhard MD, Sachs RM (1975) Anthropometric manikin for acoustic research. J Acoust Soc Am 58:214–222.

    PubMed  CAS  Google Scholar 

  • Carlile S, Pralong D (1994) The location-dependent nature of perceptually salient features of the human head-related transfer functions. J Acoust Soc Am 95:3445–3459.

    Google Scholar 

  • Carlile S, Martin R, McAnally K (2005) Spectral information in sound localization. Int Rev Neurobiol 7:399–435.

    Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:402–417.

    Google Scholar 

  • Carney LH, McDuffy MJ, Shekhter I (1999) Frequency glides in the impulse responses of auditory-nerve fibers. J Acoust Soc Am 105:2384–2391.

    PubMed  CAS  Google Scholar 

  • Cheatham MA, Dallos P (2001) Inner hair cell response patterns: implications for low-frequency hearing. J Acoust Soc Am 110:2034–2044.

    PubMed  CAS  Google Scholar 

  • Cooper NP (1996) Two-tone suppression in cochlear mechanics. J Acoust Soc Am 99:3087–3098.

    PubMed  CAS  Google Scholar 

  • Cooper NP (2004) Compression in the peripheral auditory system. In: Bacon SP, Fay RR, Popper AN (eds), Compression: From Cochlea to Cochlear Implants. New York: Springer, pp. 19–61.

    Google Scholar 

  • Dallos P (1984) Some electrical circuit properties of the organ of Corti: II. Analysis including reactive elements. Hear Res 14:281–291.

    PubMed  CAS  Google Scholar 

  • Dallos P (1985) Response characteristics of mammalian cochlear hair cells. J Neurosci 5:1591–1608.

    PubMed  CAS  Google Scholar 

  • de Boer E (1975) Synthetic whole-nerve action potentials for the cat. J Acoust Soc Am 58:1030–1045.

    PubMed  Google Scholar 

  • de Boer E (1996) Mechanics of the cochlea: modeling efforts. In: Dallos P, Popper AN, Fay RR (eds), Auditory Computation. New York: Springer, pp. 258–317.

    Google Scholar 

  • de Boer E, de Jongh HR (1978) On cochlear encoding: potentialities and limitations of the reverse correlation technique. J Acoust Soc Am 63:115–135.

    PubMed  Google Scholar 

  • de Boer E, Nuttall AL (1997) The mechanical waveform of the basilar membrane: I: Frequency modulation (“glides”) in impulse responses and cross-correlation functions. J Acoust Soc Am 101:3583–3592.

    PubMed  Google Scholar 

  • Deng L, Geisler CD (1987) A composite auditory model for processing speech sounds. J Acoust Soc Am 82:2001–2012.

    PubMed  CAS  Google Scholar 

  • Derleth RP, Dau T, Kollmeier B (2001) Modeling temporal and compressive properties of the normal and impaired auditory system. Hear Res 159:132–149.

    PubMed  CAS  Google Scholar 

  • Dornhoffer JL (1998) Hearing results with the Dornhoffer ossicular replacement prostheses. Laryngoscope 108:531–536.

    PubMed  CAS  Google Scholar 

  • Duda RO, Martens WL (1998) Range dependence of the response of a spherical head model. J Acoust Soc Am 104:3048–3058.

    Google Scholar 

  • Duifhuis H (1976) Cochlear nonlinearity and second filter: possible mechanism and implications. J Acoust Soc Am 59:408–423.

    PubMed  CAS  Google Scholar 

  • Duifhuis H (2004) Comments on “An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity.” J Acoust Soc Am 115(5 Pt 1):1889–1990.

    PubMed  Google Scholar 

  • Eggermont JJ (1973) Analogue modeling of cochlea adaptation. Kybernetic 14:117–126.

    CAS  Google Scholar 

  • Ferry RT, Meddis R (2007) A computer model of medial efferent suppression in the mammalian auditory system. J Acoust Soc Am 122:3519–3526.

    PubMed  Google Scholar 

  • Flanagan JL (1960) Models for approximating basilar membrane displacement. Bell Syst Technol J 39:1163–1191.

    Google Scholar 

  • Gan RZ, Sun Q, Dyer RK, Chang K-H, Dormer KJ (2002) Three-dimensional modeling of middle ear biomechanics and its applications. Otol Neurotol 23:271–280.

    PubMed  Google Scholar 

  • Geisler CD, Le S, Schwid H (1979) Further studies on the Schroeder-hall hair-cell model. J Acoust Soc Am 65:985–990.

    PubMed  CAS  Google Scholar 

  • Ghitza O, Messing D, Delhorne L (2007) Towards predicting consonant confusions of degraded speech. In: Kollmeier B, Klump, G, Hohmann V, Langemann U, Mauermann M, Uppenkamp S, Verhey J (eds), Hearing: From Sensory Processing to Perception. New York: Springer, pp. 541–550.

    Google Scholar 

  • Gockel H, Moore BCJ, Patterson RD, Meddis R (2003) Louder sounds can produce less forward masking effects: effects of component phase in complex tones. J Acoust Soc Am 114:978–990.

    PubMed  Google Scholar 

  • Goldstein JL (1966) Auditory nonlinearity. J Acoust Soc Am 41:676–689.

    Google Scholar 

  • Goldstein JL (1988) Updating cochlear driven models of auditory perception: a new model for nonlinear auditory frequency analysing filters. In: Elsendoorn BAG, Bouma H (eds), Working Models of Human Perception. London: Academic, pp. 19–58.

    Google Scholar 

  • Goldstein JL (1990) Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinearity filtering. Hear Res 49:39–60.

    PubMed  CAS  Google Scholar 

  • Goldstein JL (1993) Exploring new principles of cochlear operation: bandpass filtering by the organ of Corti and additive amplification by the basilar membrane. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds), Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 315–322.

    Google Scholar 

  • Goldstein JL (1995) Relations among compression, suppression, and combination tones in mechanical responses of the basilar membrane: data and MBPNL model. Hear Res 89:52–68.

    PubMed  CAS  Google Scholar 

  • Goode RL, Killion M, Nakamura K, Nishihara S (1994) New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol 15:145–154.

    PubMed  CAS  Google Scholar 

  • Goutman JD, Glowatzki E (2007) Time course and calcium dependence of transmitter release at a single ribbon synapse. Proc Natl Acad Sci U S A 104:16341–16346.

    PubMed  CAS  Google Scholar 

  • Griesinger CB, Richards CD, Ashmore JF (2002) FM1-43 reveals membrane recycling in adult inner hair cells of the mammalian cochlea. J Neurosci 22:3939–3952.

    PubMed  CAS  Google Scholar 

  • Guinan JJ (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589–607.

    PubMed  Google Scholar 

  • Guinan JJ, Peake WT (1966) Middle-ear characteristics of anaesthetized cats. J Acoust Soc Am 41:1237–1261.

    Google Scholar 

  • Harris DM, Dallos P (1979) Forward masking of auditory nerve fiber responses. J Neurophysiol 42:1083–1107.

    PubMed  CAS  Google Scholar 

  • Heil P, Neubauer H (2003) Unifying basis of auditory thresholds based on temporal summation. Proc Natl Acad Sci U S A 100:6151 6156.

    Google Scholar 

  • Heinz MG, Zhang X, Bruce IC, Carney LH (2001) Auditory nerve model for predicting performance limits of normal and impaired listeners. Acoust Res Lett Online 2:91–96.

    Google Scholar 

  • Holmes SD, Sumner CJ, O’Mard LPO, Meddis R (2004) The temporal representation of speech in a nonlinear model of the guinea pig cochlea. J Acoust Soc Am 116:3534–3545.

    PubMed  Google Scholar 

  • Irino T, Patterson RD (1997) A time-domain, level-dependent auditory filter: the gammachirp. J Acoust Soc Am 101:412–419.

    Google Scholar 

  • Irino T, Patterson RD (2001) A compressive gammachirp auditory filter for both physiological and psychophysical data. J Acoust Soc Am 109:2008–2022.

    PubMed  CAS  Google Scholar 

  • Irino T, Patterson RD (2006) A dynamic, compressive gammachirp auditory filterbank. IEEE Audio Speech Lang Process 14:2222–2232.

    Google Scholar 

  • Kidd RC, Weiss TF (1990) Mechanisms that degrade and timing information in the cochlea. Hear Res 49:181–208.

    PubMed  CAS  Google Scholar 

  • Kistler DJ, Wightman FL (1992) A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction. J Acoust Soc Am 91:1637–1647.

    PubMed  CAS  Google Scholar 

  • Kleinschmidt M, Tchorz J, Kollmeier B (1999) Combining speech enhancement and auditory feature extraction for robust speech recognition. Speech Commun 34:75–91.

    Google Scholar 

  • Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317.

    PubMed  Google Scholar 

  • Kringlebotn M (1988) Network model for the human middle ear. Scand Audiol 17:75–85.

    PubMed  CAS  Google Scholar 

  • Kros CJ (1996) Physiology of mammalian cochlear hair cells. In: Dallos P, Popper AN, Fay RR (eds), The Cochlea. New York: Springer, pp. 318–385.

    Google Scholar 

  • Kros CJ, Crawford AC (1990) Potassium currents in inner hair cells isolated from the guinea-pig cochlea. J Physiol 421:263–291.

    PubMed  CAS  Google Scholar 

  • Kulkarni A, Colburn HS (2004) Infinite-impulse-response models of the head-related transfer function. J Acoust Soc Am 115:1714–1728.

    PubMed  Google Scholar 

  • Kulkarni A, Isabelle SK, Colburn HS (1999) Sensitivity of human subjects to head-related-transfer-function phase spectra. J Acoust Soc Am 105:2821–2840.

    PubMed  CAS  Google Scholar 

  • Lopez-Najera A, Meddis R, Lopez-Poveda EA (2005) A computational algorithm for computing non-linear auditory frequency selectivity: further studies. In: Pressnitzer, D, de Cheveigné A, McAdams S, Collet L (eds), Auditory Signal Processing: Physiology, Psychoacoustics, and Models. New York: Springer, pp. 14–20.

    Google Scholar 

  • Lopez-Najera A, Lopez-Poveda EA, Meddis R (2007) Further studies on the dual-resonance nonlinear filter model of cochlear frequency selectivity: responses to tones. J Acoust Soc Am 122:2124–2134.

    PubMed  Google Scholar 

  • Lopez-Poveda EA (1996) The physical origin and physiological coding of pinna-based spectral cues. PhD thesis, Loughborough University, UK.

    Google Scholar 

  • Lopez-Poveda EA (2003) An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity. J Acoust Soc Am 114:2112–2117.

    PubMed  Google Scholar 

  • Lopez-Poveda EA (2005) Spectral processing by the peripheral auditory system: facts and models. Int Rev Neurobiol 70:7–48.

    PubMed  Google Scholar 

  • Lopez-Poveda EA, Eustaquio-Martín A (2006) A biophysical model of the inner hair cell: the contribution of potassium current to peripheral compression. J Assoc Res Otolaryngol 7:218–235.

    PubMed  Google Scholar 

  • Lopez-Poveda EA, Meddis R (1996) A physical model of sound diffraction and reflections in the human concha. J Acoust Soc Am 100:3248–3259.

    PubMed  CAS  Google Scholar 

  • Lopez-Poveda EA, Meddis R (2001) A human nonlinear cochlear filterbank. J Acoust Soc Am 10:3107–3118.

    Google Scholar 

  • Lopez-Poveda EA, Plack CJ, Meddis R (2003) Cochlear nonlinearity between 500 and 8000 Hz in normal-hearing listeners. J Acoust Soc Am 113:951–960.

    Google Scholar 

  • Lopez-Poveda EA, Barrios LF, Alves-Pinto A (2007) Psychophysical estimates of level-dependent best-frequency shifts in the apical region of the human basilar membrane. J Acoust Soc Am 121:3646–3654.

    PubMed  Google Scholar 

  • Lyon RF (1997) All-pole models of auditory filtering. In: Lewis ER, Lyon R, Long GR, Narins PM (eds), Diversity in Auditory Mechanics. Singapore: World Scientific, pp. 205–211.

    Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702–711.

    PubMed  CAS  Google Scholar 

  • Meddis R (1988) Simulation of mechanical to neural transduction: further studies. J Acoust Soc Am 83:1056–1063.

    PubMed  CAS  Google Scholar 

  • Meddis R (2006) Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. J Acoust Soc Am 119:406–417.

    PubMed  Google Scholar 

  • Meddis R, O’Mard LPO, Lopez-Poveda EA (2001) A computational algorithm for computing non-linear auditory frequency selectivity. J Acoust Soc Am 109:2852–2861.

    PubMed  CAS  Google Scholar 

  • Meddis R, Delahaye R, O’Mard LPO, Sumner C, Fantini DA, Winter I, Pressnitzer D (2002) A model of signal processing in the cochlear nucleus: comodulation masking release. Acta Acust/Acustica 88:387–398.

    Google Scholar 

  • Messing DP, Delhorne L, Bruckert E, Braida LD, Ghitza O (2009) A non-linear efferent-inspired model of the auditory system; matching human confusion in stationary noise. Speech Commun 51:668–683.

    Google Scholar 

  • Møller AR (1961) Network model of the middle ear. J Acoust Soc Am 33:168–176.

    Google Scholar 

  • Moore BCJ (2007) Cochlear Hearing Loss. Physiological, Psychological and Technical Issues. Chichester: Wiley.

    Google Scholar 

  • Moore BCJ, Glasberg BR, Baer T (1997) A model for the prediction of thresholds, loudness and partial loudness. J Audio Eng Soc 45:224–240.

    Google Scholar 

  • Mountain DC, Hubbard AE (1996) Computational analysis of hair cell and auditory nerve processes. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (eds), Auditory Computation. New York: Springer, pp. 121–156.

    Google Scholar 

  • Narayan SS, Temchin AN, Recio A, Ruggero MA (1998) Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science 282:1882–1884.

    PubMed  CAS  Google Scholar 

  • Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676–1689.

    PubMed  CAS  Google Scholar 

  • Nilsson HG (1975) Model of discharge patterns of units in the cochlear nucleus in response to steady state and time-varying sounds. Biol Cybern 20:113–119.

    PubMed  CAS  Google Scholar 

  • Oono Y, Sujaku Y (1975) A model for automatic gain control observed in the firings of primary auditory neurons. Trans Inst Electron Comm Eng Jpn 58:352–358 (in Japanese) An abstract in English appears in Abstracts of the Trans Inst Elects on Comm Eng Jpn 58:61–62.

    Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair cells. Hear Res 24:1–15.

    PubMed  CAS  Google Scholar 

  • Pascal J, Bourgeade A, Lagier M, Legros C (1998) Linear and nonlinear model of the human middle ear. J Acoust Soc Am 104:1509–1516.

    PubMed  CAS  Google Scholar 

  • Patterson RD, Robinson K, Holdsworth J, McKeown D, Zhang C, Allerhand M (1992) Complex sounds and auditory images. In: Cazals Y, Horner K, Demany L (eds), Auditory Physiology and Perception, Oxford: Pergamon, pp. 429–443.

    Google Scholar 

  • Patterson RD, Unoki M, Irino T (2003) Extending the domain of center frequencies for the compressive gammachirp auditory filter. J Acoust Soc Am 114:1529–1542.

    PubMed  Google Scholar 

  • Patuzzi R, Sellick PM (1983) A comparison between basilar membrane and inner hair cell receptor potential input-output functions in the guinea pig cochlea. J Acoust Soc Am 74:1734–1741.

    Google Scholar 

  • Patuzzi R, Sellick PM, Johnstone BM (1984) The modulation of the sensitivity of the mammalian cochlea by low frequency tones: III. Basilar membrane motion. Hear Res 13:19–27.

    PubMed  CAS  Google Scholar 

  • Pfeiffer RR (1970) A model for two-tone inhibition of single cochlear-nerve fibers. J Acoust Soc Am 48:1373–1378.

    PubMed  Google Scholar 

  • Plack CJ, Oxenham AJ, Drga V (2002) Linear and nonlinear processes in temporal masking. Acta Acust/Acustica 88:348–358.

    Google Scholar 

  • Plomp R (1976) Aspects of Tone Sensation: A Psychophysical Study. London: Academic.

    Google Scholar 

  • Recio A, Rich NC, Narayan SS, Ruggero MA (1998) Basilar-membrane responses to clicks at the base of the chinchilla cochlea. J Acoust Soc Am 103:1972–1989.

    PubMed  CAS  Google Scholar 

  • Rhode WS, Cooper NP (1996) Nonlinear mechanics in the apical turn of the chinchilla cochlea in vivo. Audit Neurosci 3:101–121.

    Google Scholar 

  • Robert A, Eriksson JL (1999) A composite model of the auditory periphery for simulating responses to complex sounds. J Acoust Soc Am 106:1852–1864.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1991) Two-tone distortion in the basilar membrane of the cochlea. Nature 349:413–414.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1997) Two-tone distortion in the basilar membrane of the chinchilla cochlea. J Neurophysiol 77:2385–2399.

    PubMed  CAS  Google Scholar 

  • Rosowski JJ (1996) Models of external- and middle-ear function. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (eds), Auditory Computation. New York: Springer, pp. 15–61.

    Google Scholar 

  • Ross S (1982) A model of the hair cell-primary fiber complex. J Acoust Soc Am 71:926–941.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Temchin AN (2002) The roles of the external, middle, and inner ears in determining the bandwidth of hearing. Proc Natl Acad Sci U S A 99:13206–13210.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Temchin AN (2003) Middle-ear transmission in humans: wide-band, not frequency-tuned? Acoust Res Lett Online 4:53–58.

    PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Recio A (1990) The effects of acoustic trauma, other cochlear injury, and death on basilar-membrane responses to sound. In: Axelson A, Borchgrevink H, Hellström PA, Henderson D, Hamernik RP, Salvi RJ (eds), Scientific Basis of Noise-Induced Hearing Loss. New York: Thieme, pp. 23–35.

    Google Scholar 

  • Russell IJ, Murugasu E (1997) Medial efferent inhibition suppresses basilar membrane responses to near characteristic frequency tones of moderate to high intensities. J Acoust Soc Am 102:1734–1738.

    PubMed  CAS  Google Scholar 

  • Russel IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 2:261–290.

    Google Scholar 

  • Sachs MB, Kiang NY (1968) Two-tone inhibition in auditory nerve fibers. J Acoust Soc Am 43:1120–1128.

    Google Scholar 

  • Schroeder MR, Hall JL (1974) Model for mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 55:1055–1060.

    PubMed  CAS  Google Scholar 

  • Schwid HA, Geisler CD (1982) Multiple reservoir model of neurotransmitter release by a cochlear inner hair cell. J Acoust Soc Am 72:1435–1440.

    PubMed  CAS  Google Scholar 

  • Searle CL, Braida LD, Cuddy DR, Davis MF (1975) Binaural pinna disparity: another auditory localization cue. J Acoust Soc Am 57:448–455.

    PubMed  CAS  Google Scholar 

  • Sellick PM, Russell IJ (1980) The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea. Hear Res 2:439–445.

    PubMed  CAS  Google Scholar 

  • Shamma SA, Chadwick RS, Wilbur WJ, Morrish KA, Rinzel J (1986) A biophysical model of cochlear processing: intensity dependence of pure tone responses. J Acoust Soc Am 80:133–145.

    PubMed  CAS  Google Scholar 

  • Shaw EAG (1966) Earcanal pressure generated by a free sound field. J Acoust Soc Am 39:465–470.

    PubMed  CAS  Google Scholar 

  • Shaw EAG (1975) The external ear. In: Keidel WD, Neff WD (eds), Handbook of Sensory Physiology. Berlin: Springer, pp. 455–490.

    Google Scholar 

  • Siebert WM (1965) Some implications of the stochastic behavior of primary auditory neurons. Kybernetic 2:206–215.

    CAS  Google Scholar 

  • Siegel JH (1992) Spontaneous synaptic potentials from afferent terminals in the guinea pig cochlea. Hear Res 59:85–92

    PubMed  CAS  Google Scholar 

  • Slaney M (1993) An efficient implementation of the Patterson-Holdsworth auditory filter bank. Apple Computer Technical Report #35. Apple Computer Inc.

    Google Scholar 

  • Smith RL, Brachman ML (1982) Adaptation in auditory nerve fibers: a revised model. Biol Cybern 44:107–120.

    PubMed  CAS  Google Scholar 

  • Smith RL, Zwislocki JJ (1975) Short-term adaptation and incremental responses of single auditory-nerve fibers. Biol Cybern 17:169–182.

    PubMed  CAS  Google Scholar 

  • Smith RL, Brachman ML, Frisina RD (1985) Sensitivity of auditory-nerve fibers to changes in intensity: a dichotomy between decrements and increments. J Acoust Soc Am 78:1310–1316.

    Google Scholar 

  • Sumner CJ, Lopez-Poveda EA, O’Mard LPO, Meddis R (2002) A revised model of the inner hair cell and auditory nerve complex. J Acoust Soc Am 111:2178–2188.

    PubMed  Google Scholar 

  • Sumner CJ, Lopez-Poveda EA, O’Mard LP, Meddis R (2003a) Adaptation in a revised inner-hair cell model. J Acoust Soc Am 113:893–901.

    PubMed  Google Scholar 

  • Sumner CJ, O’Mard LPO, Lopez-Poveda EA, Meddis R (2003b) A non-linear filter-bank model of the guinea-pig cochlear nerve. J Acoust Soc Am 113:3264–3274.

    PubMed  Google Scholar 

  • Sun Q, Gan RZ, Chang K-H, Dormer KJ (2002) Computer-integrated finite element modeling of human middle ear. Biomechan Model Mechanobiol 1:109–122.

    CAS  Google Scholar 

  • Tan Q, Carney LH (2003) A phenomenological model for the responses of auditory-nerve fibers: II. Nonlinear tuning with a frequency glide. J Acoust Soc Am 114:2007–2020.

    PubMed  Google Scholar 

  • von Helmholtz HL (1877) The Sensation of tones. (Translated by AJ Ellis, 1954.) New York: Dover.

    Google Scholar 

  • Voss SE, Rosowski JJ, Merchant SN, Peake WT (2000) Acoustic responses of the human middle ear. Hear Res 150:43–69.

    PubMed  CAS  Google Scholar 

  • Walsh T, Demkowicz L, Charles R (2004) Boundary element modelling of the external human auditory system. J Acoust Soc Am 115:1033–1043.

    PubMed  Google Scholar 

  • Weiss TF (1966) A model of the peripheral auditory system. Kybernetic 3:153–175.

    CAS  Google Scholar 

  • Westerman LA, Smith RL (1984) Rapid and short term adaptation in auditory nerve responses. Hear Res 15:249–260.

    PubMed  CAS  Google Scholar 

  • Westerman LA, Smith RL (1988) A diffusion model of the transient response of the cochlear inner hair cell synapse. J Acoust Soc Am 83:2266–2276.

    PubMed  CAS  Google Scholar 

  • Wiegrebe L, Meddis R (2004) The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus. J Acoust Soc Am 115:1207–1218.

    PubMed  Google Scholar 

  • Wightman FL, Kistler DJ (1989) Headphone simulation of free-field listening: I. Stimulus synthesis. J Acoust Soc Am 85:858–867.

    PubMed  CAS  Google Scholar 

  • Wilson BS, Schatzer R, Lopez-Poveda EA, Sun X, Lawson DT, Wolford RD (2005) Two new directions in speech processor design for cochlear implants. Ear Hear 26:73S–81S.

    PubMed  Google Scholar 

  • Wilson BS, Schatzer R, Lopez-Poveda EA (2006) Possibilities for a closer mimicking of normal auditory functions with cochlear implants. In: Waltzman SB, Roland JT (eds), Cochlear Implants. New York: Thieme, pp. 48–56.

    Google Scholar 

  • Zeddies DG, Siegel JH (2004) A biophysical model of an inner-hair cell. J Acoust Soc Am 116:426–441.

    PubMed  CAS  Google Scholar 

  • Zhang X, Carney LH (2005) Analysis of models for the synapse between the inner hair cell and the auditory nerve. J Acoust Soc Am 118:1540–1553.

    PubMed  Google Scholar 

  • Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648–670.

    PubMed  CAS  Google Scholar 

  • Zwislocki J (1962) Analysis of the middle-ear function. Part I: Input impedance. J Acoust Soc Am 34:1514–1523.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Meddis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Meddis, R., Lopez-Poveda, E.A. (2010). Auditory Periphery: From Pinna to Auditory Nerve. In: Meddis, R., Lopez-Poveda, E., Fay, R., Popper, A. (eds) Computational Models of the Auditory System. Springer Handbook of Auditory Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5934-8_2

Download citation

Publish with us

Policies and ethics