Skip to main content

Silicon Models of the Auditory Pathway

  • Chapter
  • First Online:
Computational Models of the Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 35))

Abstract

Neuromorphic engineering is a discipline of electrical engineering that aims to develop signal processing systems using biological neural systems as inspiration. As such it has the dual goal of building models of neural systems in order to better understand them, and of building systems to perform useful functions for particular applications. While neuromorphic engineers extensively develop and use computer models of neural systems, which are generally less expensive and faster to create, the main goal is to implement the models in electronic hardware. The greatest advantage of a hardware model is that it gives solutions in real time. Where it may take hours and even days to simulate a small time period in a complex software model, results from a hardware model are obtained instantly. As computational power increases, neural models are also becoming more and more complex, so that for the foreseeable future there is a need for hardware implementations to allow models to interact with the world in real time. An often underestimated benefit of real-time operation is that in watching the behavior of the system change during the tuning of parameters, the researcher develops a much better intuition about the influence of these parameters. In addition to real-time operation, hardware models suffer from unavoidable mismatch and noise, just like neural systems. This forces the models to be robust to noise and mismatch, which is not the case for computer models, where noise and mismatch would have to be specifically added.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen J (1985) Cochlear modeling. IEEE ASSP Mag 2:3–29.

    Article  Google Scholar 

  • Bhadkamkar N, Fowler B (1993) A sound localization system based on biological analogy. In Proceedings of the IEEE International Conference on Neural Networks, 28 March–1 April 1993, San Francisco, CA. 1902–1907.

    Google Scholar 

  • Chan V, Liu S-C, van Schaik A (2007) AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Trans Circuits Syst I 54:48–59.

    Article  Google Scholar 

  • Folowosele F, Hamilton TJ, Harrison A, Mihalas S, Niebur E, Cassidy A, Andreou A, Etienne-Cummings R (2009) A switched capacitor implementation of the generalized linear integrate-and-fire neuron. 24–27 May 2009, Proc IEEE Int Symp Circuits Syst 2149–2152.

    Google Scholar 

  • Fragniere E (1998) Analogue VLSI emulation of the cochlea. DĂ©partement d’électricitĂ© Lausanne: EPFL; 221.

    Google Scholar 

  • Furth PM, Andreou AG (1995) A design framework for low power analog filter banks. IEEE Trans Circuits Syst I 42:966–971.

    Article  Google Scholar 

  • Georgiou J, Toumazou C (2005) A 126-μW cochlear chip for a totally implantable system. IEEE J Solid State Circuits 40:430–443.

    Article  Google Scholar 

  • Germanovix W, Toumazou C (1998) Towards a fully implantable analogue cochlear prosthesis. IEE Colloq Analog Signal Processing 10:1–1011.

    Google Scholar 

  • Hamilton TJ, Jin C, Tapson J, van Schaik A (2008a) An active 2-D silicon cochlea. IEEE Trans Biomed Circuits Syst 2:30–43.

    Article  Google Scholar 

  • Hamilton TJ, Tapson J, Jin C, van Schaik A (2008b) Analogue VLSI implementations of two dimensional, nonlinear, active cochlea models. 20–22 November 2008, Proc IEEE Biomed Circuits Syst 153–156.

    Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci U S A 74:2407–2411.

    Article  PubMed  CAS  Google Scholar 

  • Indiveri G (2003) A low-power adaptive integrate-and-fire neuron circuit. Proc IEEE Int Symp Circuits Syst 4:820–823.

    Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572.

    Article  PubMed  CAS  Google Scholar 

  • Jenn-Chyou B, Chung-Yu W (1996) Analog electronic cochlea design using multiplexing switched-capacitor circuits. IEEE Trans Neural Netw 7:155–166.

    Article  Google Scholar 

  • Jones S, Meddis R, Lim SC, Temple AR (2000) Toward a digital neuromorphic pitch extraction system. IEEE Trans Neural Netw 11:978–987.

    Article  PubMed  CAS  Google Scholar 

  • Jyhfong L, Wing-Hung K, Edwards T, Shamma S (1994) Analog VLSI implementations of auditory wavelet transforms using switched-capacitor circuits. IEEE Trans Circuits Syst I 41:572–583.

    Article  Google Scholar 

  • Lapicque L (1907) Recherches quantitatifs sur l’excitation Ă©lectrique des nerfs traitĂ©e comme une polarisation. J Physiol (Paris) 9620–635.

    Google Scholar 

  • Lazzaro J, Mead C (1989) Circuit models of sensory transduction in the cochlea. In: Mead C, Ismail M (eds). Analog VLSI Implementations of Neural Networks. Norwell, MA: Kluwer, pp 85–101.

    Chapter  Google Scholar 

  • Lazzaro J, Wawrzynek J, Kramer A (1994) Systems technologies for silicon auditory models. IEEE Micro 14:7–15.

    Article  Google Scholar 

  • Leong MP, Jin CT, Leong PHW (2003) An FPGA-based electronic cochlea. EURASIP J Appl Signal Processing 7:629–638.

    Google Scholar 

  • Liu W, Andreou AG, Goldstein MH (1991) An analog integrated speech front-end based on the auditory periphery. Proc Int Joint Conf Neural Netw 2:861–864.

    Google Scholar 

  • Liu W, Andreou AG, Goldstein MH (1992) Voiced-speech representation by an analog silicon model of the auditory periphery. IEEE Trans Neural Netw 3:477–487.

    Article  PubMed  CAS  Google Scholar 

  • Lyon RF (1991) Analog implementations of auditory models. In: Human Language Technology Conference Proceedings of Workshop on Speech and Natural Language, 19–22 February 1991, Pacific Grove, CA. Morristown, NJ: Assoc Comp Ling 212–216.

    Google Scholar 

  • Lyon RF, Mead C (1988) An analog electronic cochlea. IEEE Trans Acoust Speech Signal Processing 36:1119–1134.

    Article  Google Scholar 

  • McEwan A, van Schaik A (2003) An analogue VLSI implementation of the Meddis inner hair cell model. EURASIP J Appl Signal Processing 7:639–648.

    Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702–711.

    Article  PubMed  CAS  Google Scholar 

  • Mihalas S, Niebur E (2009) A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Comput 21:704–718.

    Article  PubMed  Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J Acoust Soc Am 49:1218–1231.

    Article  PubMed  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1997) Two-tone distortion on the basilar membrane of the chinchilla cochlea. J Neurophysiol 77:2385–2399.

    PubMed  CAS  Google Scholar 

  • Ruggero MA (1992) Responses to sound of the basilar membrane of the mammalian cochlea. Curr Opin Neurobiol 2:449–456.

    Article  PubMed  CAS  Google Scholar 

  • Ruggero MA, Robles L, Rich NC (1992) Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J Neurophysiol 68:1087–1099.

    PubMed  CAS  Google Scholar 

  • Sarpeshkar R, Lyon RF, Mead CA (1996) An analog VLSI cochlea with new transconductance amplifiers and nonlinear gain control. Proc IEEE Int Symp Circuits Syst, Atlanta, USA, 3:292–296.

    Google Scholar 

  • Sarpeshkar R, Lyon RF, Mead C (1998) A low-power wide-dynamic-range analog VLSI cochlea. Analog Integr Circuits Signal Processing 16:245–274.

    Article  Google Scholar 

  • Shiraishi H (2004) Design of an Analog VLSI Cochlea. Master’s Thesis, Electrical and Information Engineering, The University of Sydney, Sydney, NSW: 90.

    Google Scholar 

  • Summerfield CD, Lyon RF (1992) ASIC implementation of the Lyon cochlea model. IEEE Proc Int Conf Acoustics Speech Signal Process, San Francisco, USA, 5:673–676.

    Google Scholar 

  • van Schaik A (2003) A small analog VLSI inner hair cell model. Proc IEEE Int Symp Circuits Syst, Bangkok, Thailand, pp 17–20.

    Google Scholar 

  • van Schaik A, Fragniere E (2001) Pseudo-voltage domain implementation of a 2-dimensional ­silicon cochlea. Proc IEEE Int Symp Circuits Syst, Sydney, Australia, 2:185–188.

    Google Scholar 

  • van Schaik A, Meddis R (1999) Analog very large-scale integrated (VLSI) implementation of a model of amplitude-modulation sensitivity in the auditory brainstem. J Acoust Soc Am 105:811–821.

    Article  PubMed  Google Scholar 

  • van Schaik A, Fragniere E, Vittoz EA (1995) Improved Silicon Cochlea using Compatible Lateral Bipolar Transistors. Advances in Neural Information Processing Systems, The MIT Press 8:671–677.

    Google Scholar 

  • van Schaik A, Fragniere E, Vittoz E (1996) An analogue electronic model of ventral cochlear nucleus neurons. Proc Fifth Int Conf Microelect Neural Netw, Lausanne, Switzerland, 1996, 52–59.

    Article  Google Scholar 

  • Watts L (1992) Cochlear Mechanics: Analysis and Analog VLSI. Ph.D. Thesis, California Institute of Technology, Pasadena, CA: 173.

    Google Scholar 

  • Watts L, Lyon RF, Mead C (1991) A bidirectional analog VLSI cochlear model. Advanced research in VLSI, Santa Cruz, MIT Press, Cambridge, MA, 153–163.

    Google Scholar 

  • Watts L, Kerns DA, Lyon RF, Mead CA (1992) Improved implementation of the silicon cochlea. IEEE J Solid State Circuits 27:692–700.

    Article  Google Scholar 

  • Wen B, Boahen K (2005) Active Bidirectional Coupling in a Cochlear Chip. Advances in Neural Information Processing Systems 17, The MIT Press.

    Google Scholar 

  • Wijekoon JHB, Dudek P (2008) Compact silicon neuron circuit with spiking and bursting behaviour. Neural Networks 21:524–534.

    Article  PubMed  Google Scholar 

  • Wittig JH (2007) Biophysical Mechanisms for Precise Temporal Signaling in the Auditory System. Ph.D. Thesis, Bioengineering University of Pennsylvania, Philadelphia, PA.

    Google Scholar 

  • Wittig JH, Boahen K (2006) Silicon neurons that phase-lock. Proc IEEE Int Symp Circuits Syst, Kos, Greece.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André van Schaik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

van Schaik, A., Hamilton, T.J., Jin, C. (2010). Silicon Models of the Auditory Pathway. In: Meddis, R., Lopez-Poveda, E., Fay, R., Popper, A. (eds) Computational Models of the Auditory System. Springer Handbook of Auditory Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5934-8_10

Download citation

Publish with us

Policies and ethics