Advertisement

Thermo-Responsive Biodegradable Hydrogels from Stereocomplexed Poly(lactide)s

  • Tomoko Fujiwara
  • Tetsuji Yamaoka
  • Yoshiharu Kimura
Chapter

Abstract

Hydrogels that form by responding to temperature changes are used for injectable biomaterials with many potential applications. Numerous techniques have been used to prepare biodegradable polymers for bioapplications. Specifically, biocompatible hydrogels that can be safely injected without surgery and sustained/disintegrated in a controlled manner are of interest. Poly(lactide), PLA, is the most studied and utilized biodegradable polymer, and its block copolymers provide a great variety of structures and properties. Utilizing stereocomplexation technology of enantiomeric PLAs on thermo-sensitive hydrogels of PLA–PEG block copolymers is an important aspect of bioapplications of hydrogels.

Keywords

Block Copolymer Triblock Copolymer Micellar Solution Gelation Mechanism Enantiomeric Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ringsdorf H, Venzmer J, Winnik FM (1991) Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides). Macromolecules 24:1678–1686CrossRefGoogle Scholar
  2. 2.
    Takei YG, Aoki T, Sanui K et al (1994) Dynamic contact-angle measurement of temperature-responsive surface-properties for poly(N-isopropylacrylamide) grafted surfaces. Macromolecules 27:6163–6166CrossRefGoogle Scholar
  3. 3.
    Zareie HM, Bulmus EV, Gunning AP et al (2000) Investigation of a stimuli-responsive copolymer by atomic force microscopy. Polymer 41:6723–6727CrossRefGoogle Scholar
  4. 4.
    Maeda Y, Higuchi T, Ikeda I (2000) Change in hydration state during the coil-globule transition of aqueous solutions of poly(N-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 16:7503–7509CrossRefGoogle Scholar
  5. 5.
    Vadnere M, Amidon G, Lindenbaum S et al (1984) Thermodynamic studies on the gel sol transition of some pluronic polyols. Int J Pharm 22:207–218CrossRefGoogle Scholar
  6. 6.
    Wanka G, Hoffmann H, Ulbricht W (1990) The aggregation behavior of poly-(oxyethylene)–poly-(oxypropylene)–poly-(oxyethylene)-block-copolymers in aqueous-solution. Colloid Polym Sci 268:101–117CrossRefGoogle Scholar
  7. 7.
    Jorgensen EB, Hvidt S, Brown W et al (1997) Effects of salts on the micellization and gelation of a triblock copolymer studied by rheology and light scattering. Macromolecules 30:2355–2364CrossRefGoogle Scholar
  8. 8.
    Deng Y, Yu GE, Price C et al (1992) Thermodynamics of micellization and gelation of oxyethylene oxypropylene diblock copolymers in aqueous-solution studied by light-scattering and differential scanning calorimetry. J Chem Soc Faraday Trans 88:1441–1446CrossRefGoogle Scholar
  9. 9.
    Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymers in aqueous-solutions – thermodynamics of copolymer association. Macromolecules 27:2414–2425CrossRefGoogle Scholar
  10. 10.
    Rees DA (1969) Conformational analysis of polysaccharides. Part II. Alternating copolymers of agar–carrageenan–chondroitin type by model building in computer with calculation of helical parameters. J Chem Soc B 217–226CrossRefGoogle Scholar
  11. 11.
    Hubbell JA, West JL, Chowdhury SM (eds) (1996) Advanced biomaterials in biomedical engineering and drug delivery systems. Springer, TokyoGoogle Scholar
  12. 12.
    Nagata Y, Kajiwara K (1997) Gel handbook. NTS, TokyoGoogle Scholar
  13. 13.
    Steinbuechel A (2001) Biopolymers. Wiley-VCH, WeinheimGoogle Scholar
  14. 14.
    Tsuruta T, Hayashi T, Ishihara K et al (1993) Biomedical applications of polymeric materials. CRC Press, Boca RatonGoogle Scholar
  15. 15.
    Zhu KJ, Song BH, Yang SL (1989) Super microcapsules (Smc). 1. Preparation and characterization of star polyethylene oxide (Peo)–polylactide (Pla) copolymers. J Polym Sci A Polym Chem 27:2151–2159CrossRefGoogle Scholar
  16. 16.
    Zhu KJ, Lin XZ, Yang SL (1990) Preparation, characterization, and properties of polylactide (Pla) poly(ethylene glycol) (Peg) copolymers – a potential-drug carrier. J Appl Polym Sci 39:1–9CrossRefGoogle Scholar
  17. 17.
    Kricheldorf HR, Boettcher C (1993) Polylactones. 27. Anionic-polymerization of l-lactide – variation of endgroups and synthesis of block-copolymers with poly(ethylene oxide). Macromol Symp 73:47–64CrossRefGoogle Scholar
  18. 18.
    Kricheldorf HR, Kreisersaunders I, Boettcher C (1995) Polylactones. 31. Sn(Ii)octoate-initiated polymerization of l-lactide – a mechanistic study. Polymer 36:1253–1259CrossRefGoogle Scholar
  19. 19.
    Kricheldorf HR, Meierhaack J (1993) Polylactones. 22. Aba triblock copolymers of l-lactide and poly(ethylene glycol). Macromol Chem Phys 194:715–725CrossRefGoogle Scholar
  20. 20.
    Cerrai P, Tricoli M (1993) Block-copolymers from l-lactide and poly(ethylene glycol) through a noncatalyzed route. Macromol Rapid Commun 14:529–538CrossRefGoogle Scholar
  21. 21.
    Jedlinski Z, Kurcok P, Walach W et al (1993) Polymerization of lactones. 17. Synthesis of ethylene glycol-l-lactide block-copolymers. Macromol Chem Phys 194:1681–1689CrossRefGoogle Scholar
  22. 22.
    Xie WH, Chen DP, Fan XH et al (1999) Lithium chloride as catalyst for the ring-opening polymerization of lactide in the presence of hydroxyl-containing compounds. J Polym Sci A Polym Chem 37:3486–3491CrossRefGoogle Scholar
  23. 23.
    Li SM, Rashkov I, Espartero JL et al (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(l-lactic acid) blocks. Macromolecules 29:57–62CrossRefGoogle Scholar
  24. 24.
    Goraltchouk A, Freier T, Shoichet MS (2005) Synthesis of degradable poly(l-lactide-co-ethylene glycol) porous tubes by liquid–liquid centrifugal casting for use as nerve guidance channels. Biomaterials 26:7555–7563CrossRefGoogle Scholar
  25. 25.
    Younes H, Cohn D (1987) Morphological-study of biodegradable PEO/PLA block copolymers. J Biomed Mater Res 21:1301–1316CrossRefGoogle Scholar
  26. 26.
    Kubies D, Rypacek F, Kovarova J et al (2000) Microdomain structure in polylactide-block-poly(ethylene oxide) copolymer films. Biomaterials 21:529–536CrossRefGoogle Scholar
  27. 27.
    Li YX, Volland C, Kissel T (1994) In-vitro degradation and bovine serum-albumin release of the ABA triblock copolymers consisting of poly(l(+)lactic acid), or poly(l(+)lactic acid-co-glycolic acid) A-blocks attached to central polyoxyethylene B-blocks. J Controlled Release 32:121–128CrossRefGoogle Scholar
  28. 28.
    Rashkov I, Manolova N, Li SM et al (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(l-lactic acid) chains. Macromolecules 29:50–56CrossRefGoogle Scholar
  29. 29.
    Shah SS, Zhu KJ, Pitt CG (1994) Poly-dl-lactic acid–polyethylene-glycol block-copolymers – the influence of polyethylene-glycol on the degradation of poly-dl-lactic acid. J Biomater Sci Polym Ed 5:421–431CrossRefGoogle Scholar
  30. 30.
    Li SM, Garreau H, Vert M (1990) Structure property relationships in the case of the degradation of massive aliphatic poly-(alpha-hydroxy acids) in aqueous-media. 1. Poly(dl-lactic acid). J Mater Sci Mater Med 1:123–130CrossRefGoogle Scholar
  31. 31.
    Hu DSG, Liu HJ (1993) Effect of soft segment on degradation kinetics in polyethylene glycol/poly(l-lactide) block-copolymers. Polymer Bull 30:669–676CrossRefGoogle Scholar
  32. 32.
    Mason MN, Metters AT, Bowman CN et al (2001) Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels. Macromolecules 34:4630–4635CrossRefGoogle Scholar
  33. 33.
    Shah NM, Pool MD, Metters AT (2006) Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels. Biomacromolecules 7:3171–3177CrossRefGoogle Scholar
  34. 34.
    Graham NB, McNeill ME (1984) Hydrogels for controlled drug delivery. Biomaterials 5:27–36CrossRefGoogle Scholar
  35. 35.
    Metters AT, Anseth KS, Bowman CN (2000) Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41:3993–4004CrossRefGoogle Scholar
  36. 36.
    Metters AT, Bowman CN, Anseth KS (2000) A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. J Phys Chem B 104:7043–7049CrossRefGoogle Scholar
  37. 37.
    Metters AT, Bowman CN, Anseth KS (2001) Verification of scaling laws for degrading PLA-b-PEG-b-PLA hydrogels. AIChE J 47:1432–1437CrossRefGoogle Scholar
  38. 38.
    Metters AT, Anseth KS, Bowman CN (2001) A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks: incorporating network non-idealities. J Phys Chem B 105:8069–8076CrossRefGoogle Scholar
  39. 39.
    Molina I, Li SM, Martinez MB et al (2001) Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 22:363–369CrossRefGoogle Scholar
  40. 40.
    Deng XM, Li XH, Yuan ML et al (1999) Optimization of preparative conditions for poly-dl-lactide–­polyethylene glycol microspheres with entrapped Vibrio cholera antigens. J Controlled Release 58:123–131CrossRefGoogle Scholar
  41. 41.
    Perez C, Sanchez A, Putnam D et al (2001) Poly(lactic acid)–poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Controlled Release 75:211–224CrossRefGoogle Scholar
  42. 42.
    Beck LR, Cowsar DR, Lewis DH et al (1979) New long-acting injectable microcapsule contraceptive system. Am J Obstet Gynecol 135:419–426Google Scholar
  43. 43.
    Gref R, Domb A, Quellec P et al (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Delivery Rev 16:215–233CrossRefGoogle Scholar
  44. 44.
    Sakurai K, Nakada Y, Nakamura T et al (1999) Preparation and characterization of polylactide–poly(ethylene glycol)–polylactide triblock polymers and a preliminary in vivo examination of the blood circulation time for the nanoparticles made therefrom. J Macromol Sci Pure Appl Chem 36:1863–1877CrossRefGoogle Scholar
  45. 45.
    Matsumoto J, Nakada Y, Sakurai K et al (1999) Preparation of nanoparticles consisted of poly(l-lactide)–poly(ethylene glycol)–poly(l-lactide) and their evaluation in vitro. Int J Pharm 185:93–101CrossRefGoogle Scholar
  46. 46.
    De Jaeghere F, Allemann E, Feijen J et al (2000) Cellular uptake of PEO surface-modified nanoparticles: evaluation of nanoparticles made of PLA:PEO diblock and triblock copolymers. J Drug Targeting 8:143–153CrossRefGoogle Scholar
  47. 47.
    Jeong B, Bae YH, Lee DS et al (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862CrossRefGoogle Scholar
  48. 48.
    Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol–gel reversible hydrogels. Adv Drug Delivery Rev 54:37–51CrossRefGoogle Scholar
  49. 49.
    Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG–PLGA–PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069CrossRefGoogle Scholar
  50. 50.
    Jeong JH, Kim SW, Park TG (2004) Biodegradable triblock copolymer of PLGA–PEG–PLGA enhances gene transfection efficiency. Pharm Res 21:50–54CrossRefGoogle Scholar
  51. 51.
    Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Controlled Release 63:155–163CrossRefGoogle Scholar
  52. 52.
    Kim YJ, Kim SW (2003) Controlled drug delivery from injectable biodegradable triblock copolymer. In ’Polymer Gels: Fundamentals and Applications’, Bohidar HB, Dubin P, Osada Y Eds, ACS, 833:300–311CrossRefGoogle Scholar
  53. 53.
    Li ZH, Ning W, Wang JM et al (2003) Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res 20:884–888CrossRefGoogle Scholar
  54. 54.
    Lee PY, Li ZH, Huang L (2003) Thermosensitive hydrogel as a Tgf-beta 1 gene delivery vehicle enhances diabetic wound healing. Pharm Res 20:1995–2000CrossRefGoogle Scholar
  55. 55.
    Lee PY, Cobain E, Huard J et al (2007) Thermosensitive hydrogel PEG–PLGA–PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound. Mol Ther 15:1189–1194CrossRefGoogle Scholar
  56. 56.
    Yu L, Chang GT, Zhang H et al (2008) Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int J Pharm 348:95–106CrossRefGoogle Scholar
  57. 57.
    Qao MX, Chen DW, Hao TN et al (2008) Injectable thermosensitive PLGA–PEG–PLGA triblock copolymers-based hydrogels as carriers for interleukin-2. Pharmazie 63:27–30Google Scholar
  58. 58.
    Qiao MX, Chen DW, Ma XC et al (2006) Sustained release of bee venom peptide from biodegradable thermosensitive PLGA–PEG–PLGA triblock copolymer-based hydrogel in vitro. Pharmazie 61:199–202Google Scholar
  59. 59.
    Pratoomsoot C, Tanioka H, Hori K et al (2008) A thermoreversible hydrogel as a biosynthetic bandage for corneal wound repair. Biomaterials 29:272–281CrossRefGoogle Scholar
  60. 60.
    Gref R, Minamitake Y, Peracchia MT et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603CrossRefGoogle Scholar
  61. 61.
    Miyamoto S, Takaoka K, Okada T et al (1993) Polylactic acid polyethyleneglycol block-copolymer – a new biodegradable synthetic carrier for bone morphogenetic protein. Clin Orthop:333–343Google Scholar
  62. 62.
    Iijima M, Nagasaki Y, Okada T et al (1999) Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers. Macromolecules 32:1140–1146CrossRefGoogle Scholar
  63. 63.
    Choi SW, Choi SY, Jeong B et al (1999) Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. Part II. J Polym Sci A Polym Chem 37:2207–2218CrossRefGoogle Scholar
  64. 64.
    Aamer KA, Sardinha H, Bhatia SR et al (2004) Rheological studies of PLLA–PEO–PLLA triblock copolymer hydrogels. Biomaterials 25:1087–1093CrossRefGoogle Scholar
  65. 65.
    Sanabria-DeLong N, Agrawal SK, Bhatia SR et al (2006) Controlling hydrogel properties by crystallization of hydrophobic domains. Macromolecules 39:1308–1310CrossRefGoogle Scholar
  66. 66.
    Sanabria-DeLong N, Agrawal SK, Bhatia SR et al (2007) Impact of synthetic technique on PLA–PEO–PLA physical hydrogel properties. Macromolecules 40:7864–7873CrossRefGoogle Scholar
  67. 67.
    Agrawal SK, Sanabria-DeLong N, Tew GN et al (2008) Structural characterization of PLA–PEO–PLA solutions and hydrogels: crystalline vs. amorphous PLA domains. Macromolecules 41:1774–1784CrossRefGoogle Scholar
  68. 68.
    Bryant SJ, Bender RJ, Durand KL et al (2004) Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol Bioeng 86:747–755CrossRefGoogle Scholar
  69. 69.
    Rice MA, Anseth KS (2004) Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. J Biomed Mater Res A 70A:560–568CrossRefGoogle Scholar
  70. 70.
    Murakami Y, Yokoyama M, Okano T et al (2007) A novel synthetic tissue-adhesive hydrogel using a crosslinkable polymeric micelle. J Biomed Mater Res A 80A:421–427CrossRefGoogle Scholar
  71. 71.
    Ikada Y, Jamshidi K, Tsuji H et al (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRefGoogle Scholar
  72. 72.
    Okihara T, Tsuji M, Kawaguchi A et al (1991) Crystal-structure of stereocomplex of poly(l-lactide) and poly(d-lactide). J Macromol Sci Phys B30:119–140CrossRefGoogle Scholar
  73. 73.
    Tsuji H, Horii F, Hyon SH et al (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated-solutions. Macromolecules 24:2719–2724CrossRefGoogle Scholar
  74. 74.
    Tsuji H (2000) In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 1. Well-stereo-complexed blend and non-blended films. Polymer 41:3621–3630CrossRefGoogle Scholar
  75. 75.
    Brochu S, Prudhomme RE, Barakat I et al (1995) Stereocomplexation and morphology of polylactides. Macromolecules 28:5230–5239CrossRefGoogle Scholar
  76. 76.
    Brizzolara D, Cantow HJ, Diederichs K et al (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197CrossRefGoogle Scholar
  77. 77.
    Hoogsteen W, Postema AR, Pennings AJ et al (1990) Crystal-structure, conformation, and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642CrossRefGoogle Scholar
  78. 78.
    Lim DW, Choi SH, Park TG (2000) A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo(lactide) side chains of poly(HEMA-g-OLA)s. Macromol Rapid Commun 21:464–471CrossRefGoogle Scholar
  79. 79.
    de Jong SJ, De Smedt SC, Wahls MWC et al (2000) Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686CrossRefGoogle Scholar
  80. 80.
    de Jong SJ, De Smedt SC, Demeester J et al (2001) Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J Controlled Release 72:47–56CrossRefGoogle Scholar
  81. 81.
    de Jong SJ, van Eerdenbrugh B, van Nostrum CF et al (2001) Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. J Controlled Release 71:261–275CrossRefGoogle Scholar
  82. 82.
    Fujiwara T, Mukose T, Yamaoka T et al (2001) Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA–PEG–PLLA and PDLA–PEG–PDLA block copolymers. Macromol Biosci 1:204–208CrossRefGoogle Scholar
  83. 83.
    Mukose T, Fujiwara T, Nakano J et al (2004) Hydrogel formation between enantiomeric B-A-B-type block copolymers of polylactides (PLLA or PDLA: A) and polyoxyethylene (PEG: B); PEG–PLLA–PEG and PEG–PDLA–PEG. Macromol Biosci 4:361–367CrossRefGoogle Scholar
  84. 84.
    Li SM, Vert M (2003) Synthesis, characterization, and stereocomplex-induced gelation of block copolymers prepared by ring-opening polymerization of l(d)-lactide in the presence of poly(ethylene glycol). Macromolecules 36:8008–8014CrossRefGoogle Scholar
  85. 85.
    Hiemstra C, Zhong ZY, Li LB et al (2006) In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)(8) and PEG-(PDLA)(8) star block copolymers. Biomacromolecules 7:2790–2795CrossRefGoogle Scholar
  86. 86.
    Hiemstra C, Zhong Z, Van Tomme SR et al (2007) In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)–poly(lactide) hydrogels. J Controlled Release 119:320–327CrossRefGoogle Scholar
  87. 87.
    Hiemstra C, Zhou W, Zhong ZY et al (2007) Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization. J Am Chem Soc 129:9918–9926CrossRefGoogle Scholar
  88. 88.
    Chung HJ, Lee YH, Park TG (2008) Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery. J Controlled Release 127:22–30CrossRefGoogle Scholar
  89. 89.
    Fujiwara T, Miyamoto M, Kimura Y (2000) Crystallization-induced morphological changes of a poly(l-lactide)/poly(oxyethylene) diblock copolymer from sphere to band via disk: a novel macromolecular self-organization process from core-shell nanoparticles on surface. Macromolecules 33:2782–2785CrossRefGoogle Scholar
  90. 90.
    Fujiwara T, Miyamoto M, Kimura Y et al (2001) Self-organization of diblock and triblock copolymers of poly(l-lactide) and poly(oxyethylene) into nanostructured bands and their network system. Proposition of a doubly twisted chain conformation of poly(l-lactide). Macromolecules 34:4043–4050CrossRefGoogle Scholar
  91. 91.
    Fujiwara T, Kimura Y (2002) Macromolecular organization of poly(l-lactide)-block-polyoxyethylene into ­bio-inspired nano-architectures. Macromol Biosci 2:11–23CrossRefGoogle Scholar
  92. 92.
    Fujiwara T, Miyamoto M, Kimura Y et al (2001) Intriguing morphology transformation due to the macromole­cular rearrangement of poly(l-lactide)-block-poly(oxyethylene): from core-shell nanoparticles to band ­structures via fragments of unimolecular size. Polymer 42:1515–1523CrossRefGoogle Scholar
  93. 93.
    Lee D, Teraoka I (2002) Termini and main-chain composition of monomethoxy-terminated poly(ethylene ­glycol) studied by two-dimensional column chromatography. Polymer 43:2691–2697CrossRefGoogle Scholar
  94. 94.
    Lee D, Teraoka I (2003) Removal of dihydroxy-terminated components from monomethoxy-terminated poly(ethylene glycol). Biomaterials 24:329–336CrossRefGoogle Scholar
  95. 95.
    Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tomoko Fujiwara
    • 1
  • Tetsuji Yamaoka
    • 2
  • Yoshiharu Kimura
    • 3
  1. 1.Department of ChemistryUniversity of MemphisMemphisUSA
  2. 2.Advanced Medical Engineering CenterNational Cardiovascular Center Research InstituteOsakaJapan
  3. 3.Department of Biobased Materials ScienceKyoto Institute of TechnologyKyotoJapan

Personalised recommendations