Skip to main content

In-Situ Gelling Stimuli-Sensitive PEG-Based Amphiphilic Copolymer Hydrogels

  • Chapter
  • First Online:
Biomedical Applications of Hydrogels Handbook

Abstract

In-situ gelling stimuli-sensitive block copolymer hydrogels exhibit sol–gel phase-transitions in response to external stimuli, due to the formation of reversible polymer networks caused by physical interactions. In-situ gelling stimuli-sensitive block copolymer hydrogels show many advantages, such as simple drug formulation and administration procedures, no organic solvent, site-specificity, a sustained drug release behavior, less systemic toxicity, and ability to delivery both hydrophilic and hydrophobic drugs. Poly(ethylene glycol)s with relatively low molecular weight are hydrophilic, nontoxic, absent of antigenicity and immunogenicity, and can be directly excreted by the kidneys. PEG-based amphiphilic copolymers have attracted extensive interest for their unique self-assembly and biocompatibility. The PEG-based amphiphilic copolymers exhibit unique changes in micellar architecture and aggregation number in response to changes near physiological temperature; therefore, in-situ gelling systems made of the PEG-based amphiphilic copolymers have received worldwide investigation. This article stresses the recent development and biomedical evaluation of the in-situ gelling stimuli-sensitive PEG-based amphiphilic copolymers that are capable of responding to changes in temperature and/or pH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–329

    CAS  Google Scholar 

  2. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12

    Google Scholar 

  3. Ruel-Gariepy E, Leroux JC (2004) In situ-forming hydrogels – review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426

    CAS  Google Scholar 

  4. He CL, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive hydrogels for drug delivery. J Control Release 127:189–207

    CAS  Google Scholar 

  5. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    CAS  Google Scholar 

  6. Taylor LD, Cerankowski LD (1975) Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solution – a study of low consolute behavior. J Polym Sci Polym Chem Ed 13:2551–2570

    CAS  Google Scholar 

  7. Horne RA, Almeida JP, Day AF et al (1971) Macromolecule hydration and the effect of solutions of polyvinyl methyl ether: a possible model for protein denaturation and temperature control in homeothermic animals. J Colloid Interface Sci 35:77–84

    CAS  Google Scholar 

  8. Aoshima S, Oda H, Kobayashi E (1992) Synthesis of thermally-induced phase separating polymer with well-defined polymer structure by living cationic polymerization. 1. Synthesis of poly(vinyl ether)s with oxyethylene units in the pendant and its phase separation behavior in aqueous solution. J Polym Sci A Polym Chem 30:2407–2413

    CAS  Google Scholar 

  9. Suwa K, Wada Y, Kikunaga Y et al (1997) Synthesis and functionalities of poly(N-vinylalkylamide). IV. Synthesis and free radical polymerization of N-vinylisobutyramide) and thermosensitive of the polymers. J Polym Sci A Polym Chem 35:1763–1768

    CAS  Google Scholar 

  10. Mikheeva LM, Grinberg NV, Mashkevich AY et al (1997) Microcalorimetric study of thermal cooperation transitions in poly(N-vinylcaprolactam) hydrogels. Macromolecules 30:2693–2699

    CAS  Google Scholar 

  11. Song SC, Lee SB, Jin JI et al (1999) A new class of biodegradable thermosensitive polymers. I. Synthesis and characterization of poly(organo phosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups. Macromolecules 32:2188–2193

    CAS  Google Scholar 

  12. Soga O, van Nostrum CF, Hennik WE (2004) Poly(N-(2-hydroxypropyl) methacrylamide mono/di lactate): a new class of biodegradable polymers with tunable thermosensitivity. Biomacromolecules 5:818–821

    CAS  Google Scholar 

  13. Vermonden T, Besseling NAM, van Steenbergen MJ et al (2006) Rheological studies of thermosensitive ­triblock copolymer hydrogels. Langmuir 22:10180–10184

    CAS  Google Scholar 

  14. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    CAS  Google Scholar 

  15. Sarkar N (1979) Thermal gelation properties of methyl and hydroxypropyl methycellulose. J Appl Polym Sci 24:1073–1087

    CAS  Google Scholar 

  16. Chenite A, Chaput C, Wang D et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161

    CAS  Google Scholar 

  17. Han CK, Bae YH (1998) Inverse thermally-reversible gelation of aqueous N-isopropylacrylamide copolymer solution. Polymer 39:2809–2814

    CAS  Google Scholar 

  18. Lin HH, Cheng YL (2001) In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures. Macromolecules 34:3710–3715

    CAS  Google Scholar 

  19. Brown W, Schillen K, Almgren M et al (1991) Micelle and gel formation in a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock block copolymer in water solution. Dynamic and static light scattering and oscillatory shear measurements. J Phys Chem 95:1850–1858

    CAS  Google Scholar 

  20. Herold CB, Keil K, Bruns DE (1989) Biochem Pharmacol 38:73

    CAS  Google Scholar 

  21. Shaffer CB, Critchfield FH (1947) J Am Pharm Assoc 36:152

    CAS  Google Scholar 

  22. Rassing J, Attwood D (1983) Ultrasonic velocity and light-scattering studies on the polyoxyethylene-polyoxypropylene copolymer F127 in aqueous solution. Int J Pharm 13:47–55

    Google Scholar 

  23. Attwood D, Collett JH, Tait CJ (1985) The micellar properties of the poly(oxyethylene)-poly(oxypropylene) copolymer Pluronic F127 in water and electrolyte solution. Int J Pharm 26:25–33

    CAS  Google Scholar 

  24. Dimitrov I, Trzebicka B, Muller AHE et al (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343

    CAS  Google Scholar 

  25. Feil H, Bae YH, Feijen J et al (1993) Effect of copolymer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500

    CAS  Google Scholar 

  26. Liu QF, Zhang P, Lu MG (2005) Synthesis and swelling behavior of comb-type grafted hydrogels by reversible addition-fragmentation chain transfer polymerization. Inc J Polym Sci A Polym Chem 43:2615–2624

    CAS  Google Scholar 

  27. Masci G, Giacomelli L, Crescenzi V (2004) Atom transfer radical polymerization of N-isopropylacrylamide. Macromol Rapid Commun 25:559–564

    CAS  Google Scholar 

  28. Topp MDC, Dijkstra PJ, Talsma H et al (1997) Thermosensitive micelle-forming block copolymers of poly (ethylene glycol) and poly(N-isopropylacrylamide). Macromolecules 30:8518–8520

    CAS  Google Scholar 

  29. Kohori F, Sakai K, Aoyagi T et al (1998) Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-d,l-lactide). J Control Release 55:87–98

    CAS  Google Scholar 

  30. Zhuang YF, Chen LW, Zhu ZQ et al (2000) Preparation and separation function of N-isopropylacrylamide copolymer hydrogels. Polym Adv Technol 11:192–197

    CAS  Google Scholar 

  31. Chen JH, Maekawa YM et al (2002) Thermoresponsive conductivity of poly(N-isopropylacylamide)/potassium chloride gel electrolytes. J Polym Sci B Polym Phys 40:134–141

    CAS  Google Scholar 

  32. Spohr R, Reber N, Wolf A et al (1998) Thermal control of drug release by a responsive ion track membrane observed by ratio tracer flow dialysis. J Control Release 50:1–11

    Google Scholar 

  33. Stile RA, Burghardt WR, Healy KE (1999) Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 32:7370–7379

    CAS  Google Scholar 

  34. Motokawa R, Morishita K, Koizumi S et al (2005) Thermosensitive diblock copolymer of poly(N-isopropylacrylamide) and poly(ethylene glycol) in water: Polymer preparation and solution behavior. Macromolecules 38:5748–5760

    CAS  Google Scholar 

  35. Tang T, Castelletto V, Parras P et al (2006) Thermo-responsive poly(methyl methacrylate)-block- poly(N-isopropylacrylamide) block copolymers synthesized by RAFT polymerization: Micellization and gelation. Macromol Chem Phys 207:1718–1726

    CAS  Google Scholar 

  36. Nykanen A, Nuopponen M, Laukkanen A et al (2007) Phase behavior and temperature-responsive melecular filters based on self-assembly of polystyrene-block-poly(N-isopropylacrylamide)-block-polystyrene. Macromolecules 40:5827–5834

    Google Scholar 

  37. Kwon IK, Matsuda T (2006) Photo-inverter-based thermoresponsive block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) and chondrocyte immobilization. Biomaterials 27:986–995

    CAS  Google Scholar 

  38. Mortensen K, Pedersen JS (1993) Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules 26:805–812

    CAS  Google Scholar 

  39. Cohn D, Sosnik A, Levy A (2003) Improved reverse thermo-responsive polymeric systems. Biomaterials 24:3707–3714

    CAS  Google Scholar 

  40. Ahn JS, Suh JM, Lee M et al (2005) Slow eroding biodegradable multiblock poloxamer copolymers. Polym Int 54:842–847

    CAS  Google Scholar 

  41. Sosnik A, Cohn D et al (2005) Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers. Biomaterials 26:349–357

    CAS  Google Scholar 

  42. Xiong XY, Tam KC, Gan LH (2005) Synthesis and thermal responsive properties of P(LA-b-EO-b-PO-EO-b-LA) block copolymers with short hydrophobic poly(lactic acid) (PLA) segments. Polymer 46:1841–1850

    CAS  Google Scholar 

  43. Xiong XY, Tam KC, Gan LH (2006) Synthesis and thermally responsive properties of novel pluronic F87/polycaprolactone (PCL) block copolymers with short PCL blocks. J Appl Polym Sci 100:4163–4172

    CAS  Google Scholar 

  44. Cohn D, Lando G, Sosnik A et al (2006) PEO–PPO–PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers. Biomaterials 27:1718–1727

    CAS  Google Scholar 

  45. Masahiko O (2002) Prog Polym Sci 27:87

    Google Scholar 

  46. Yasin M, Tighe BJ (1992) Biomaterials 13:9

    CAS  Google Scholar 

  47. Jeong B, Bae YH, Lee DS et al (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    CAS  Google Scholar 

  48. Jeong B, Lee DS, Shon J et al (1999) Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. J Polym Sci A Polym Chem 37:751–760

    CAS  Google Scholar 

  49. Choi SW, Choi SY, Jeong B et al (1999) Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. II. JPolym Sci A Polym Chem 37:2207–2218

    CAS  Google Scholar 

  50. Li F, Li S, Ghzaoui AE et al (2007) Synthesis and gelation properties of PEG-PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl chloride. Langmuir 23:2778–2783

    CAS  Google Scholar 

  51. Park SY, Han DK, Kim SC et al (2001) Synthesis and characterization of star-shaped PLLA-PEO block copolymers with temperature-sensitive sol–gel transition behavior. Macromolecules 34:8821–8824

    CAS  Google Scholar 

  52. Park SY, Han BR, Na KM et al (2003) Micellization and gelation of aqueous solutions of star-shaped PLLA-PEO block copolymers. Macromolecules 36:4115–4124

    CAS  Google Scholar 

  53. Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069

    CAS  Google Scholar 

  54. Jeong B, Choi YK, Bae YH et al (1999) New biodegradable polymers for injectable drug delivery systems. J Control Release 62:109–114

    CAS  Google Scholar 

  55. Jeong B, Bae YH, Kim SW (1999) Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloids Surf B Biointerfaces 16:185–193

    CAS  Google Scholar 

  56. Park MJ, Char K (2004) Gelation behavior of PEO–PLGA–PEO triblock copolymers induced by macroscopic phase separation. Langmuir 20:2456–2465

    CAS  Google Scholar 

  57. Kwon KW, Park MJ, Bae YH et al (2002) Gelation behavior of PEO–PLGA–PEO triblock copolymers in water. Polymer 43:3353–3358

    CAS  Google Scholar 

  58. Jeong B, Bae YH, Kim SW et al (2000) In situ gelation of PEG–PLGA–PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res 50:171–177

    CAS  Google Scholar 

  59. Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Control Release 63:155–163

    CAS  Google Scholar 

  60. Tyagi P, Li Z, Chancellor M et al (2004) Sustained intravesical drug delivery using thermosensitive hydrogel. Pharm Res 21:832–837

    CAS  Google Scholar 

  61. Li Z, Ning W, Wang J et al (2003) Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res 20:884–888

    CAS  Google Scholar 

  62. Lee PY, Li Z, Huang L (2003) Thermosensitive hydrogel as a Tgf-β1 gene delivery vehicle enhances diabetic wound healing. Pharm Res 20:1995–2000

    CAS  Google Scholar 

  63. Lee DS, Shim MS, Kim SW et al (2001) Novel thermoreversible gelation of biodegradable PLGA-bolck-PEO-block-PLGA triblock copolymers in aqueous solution. Macromol Rapid Commun 22:587–592

    CAS  Google Scholar 

  64. Zentner GM, Rathi R, Shih C et al (2001) Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 72:203–215

    CAS  Google Scholar 

  65. Shim MS, Lee HT, Shim WS et al (2002) Poly(d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(d,l-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J Biomed Mater Res 61:188–196

    CAS  Google Scholar 

  66. Kim YJ, Choi S, Koh JJ et al (2001) Controlled release of insulin from injectable biodegradable triblock copolymer. Pharm Res 18:548–550

    CAS  Google Scholar 

  67. Choi S, Kim SW (2003) Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats. Pharm Res 20:2008–2010

    CAS  Google Scholar 

  68. Choi S, Baudys M, Kim SW (2004) Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA–PEG–PLGA in type-2 diabetic rats. Pharm Res 21:827–831

    CAS  Google Scholar 

  69. Zhong Z, Dijkstra PJ, Feijen J et al (2002) Synthesis and aquesou phase behavior of thermoresponsive biodegradable poly(d,l-3-methylglycolide)-block-poly(ethylene glycol)-block-poly(d,l-3-methyl-glycolide) triblock copolymers. Macromol Chem Phys 203:1797–1803

    CAS  Google Scholar 

  70. Qiao M, Chen D, Ma X et al (2005) Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm 294:103–112

    CAS  Google Scholar 

  71. Yu L, Zhang H, Ding J (2006) A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angew Chem Int Ed 45:2232–2235

    CAS  Google Scholar 

  72. Yu L, Chang G, Zhang H et al (2007) Temperature-induced spontaneous sol–gel transition of poly(d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(d,l-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J Polym Sci A Polym Chem 45:1122–1133

    CAS  Google Scholar 

  73. Jo S, Kim J, Kim SW (2006) Reverse thermal gelation of aliphatically modified biodegradable triblock copolymers. Macromol Biosci 6:923–928

    CAS  Google Scholar 

  74. Jeong B, Wang LQ, Gutowska A (2001) Biodegradable thermoreversible gelling PLGA-g-PEG copolymers. Chem Commun 16:1516–1517

    Google Scholar 

  75. Lee SJ, Han BR, Park SY et al (2006) Sol–gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA–PEG block copolymer aqueous solution. J Polym Sci A Polym Chem 44:888–899

    CAS  Google Scholar 

  76. Lee SJ, Bae Y, Kataoka K et al (2008) In vitro release and in vivo anti-tumor efficacy of doxorubincin from biodegradable temperature-sensitive star-shaped PLGA–PEG block copolymer hydrogel. Polym J 40:171–176

    CAS  Google Scholar 

  77. Jeong B, Kibbey MR, Birnbaum JC et al (2000) Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules 33:8317–8322

    CAS  Google Scholar 

  78. Chung YM, Simmons KL, Gutowska A et al (2002) Sol–gel transition temperature of PLGA-g-PEG aqueous solutions. Biomacromolecules 3:511–516

    CAS  Google Scholar 

  79. Jeong B, Windisch CF, Park MJ et al (2003) Phase transition of the PLGA-g-PEG copolymer aqueous solutions. J Phys Chem B 107:10032–10039

    CAS  Google Scholar 

  80. Jeong B, Lee KM, Gutowska A et al (2002) Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromolecules 3:865–868

    CAS  Google Scholar 

  81. Kim MS, Seo KS, Khang G et al (2004) Preparation of methoxy poly(ethylene glycol)/polyester diblock copolymers and examination of the gel-to-sol transition. J Polym Sci A Polym Chem 42:5784–5793

    CAS  Google Scholar 

  82. Yang J, Jia L, Hao Q et al (2005) A novel approach to biodegradable block copolymers of ε-caprolactone and δ-valerolactone catalyzed by new aluminum metal complexes II. Micellization and solution to gel transition. Macromol Biosci 5:896–903

    CAS  Google Scholar 

  83. Kim MS, Seo KS, Khang G et al (2004) Preparation of poly(ethylene glycol)-block-poly(caprolactone) copolymers and their applications as the thermo-sensitive materials. J Biomed Mater Res 70A:154–158

    CAS  Google Scholar 

  84. Kim MS, Hyun H, Khang G et al (2006) Preparation of thermosensitive diblock copolymers consisting of MPEG and polyesters. Macromolecules 39:3099–3102

    CAS  Google Scholar 

  85. Kim MS, Hyun H, Seo KS et al (2006) Preparation and characterization of MPEG–PCL diblock copolymers with thermo-responsive sol–gel–sol phase transition. J Polym Sci A Polym Chem 44:5413–5423

    CAS  Google Scholar 

  86. Kim MS, Kim SK, Kim SH et al (2006) In vivo osteogenic differentiation of rat bone marrow stromal cells in thermosensitive MPEG–PCL diblock copolymer gels. Tissue Eng 12:2863–2873

    CAS  Google Scholar 

  87. Hyun H, Kim YH, Song IB et al (2007) In vitro and in vivo release of albumin using a biodegradable MPEG–PCL diblock copolymer as an in situ gel-forming carrier. Biomacromolecules 8:1093–1100

    CAS  Google Scholar 

  88. Hwang MJ, Suh JM, Bae YH et al (2005) Caprolactonic poloxamer analog: PEG–PCL–PEG. Biomacromolecules 6:885–890

    CAS  Google Scholar 

  89. Bae SJ, Suh JM, Sohn YS et al (2005) Thermogelling poly(carprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 38:5260–5265

    CAS  Google Scholar 

  90. Bae SJ, Joo MK, Jeong Y et al (2006) Gelation behavior of poly(ethylene glycol) and polycaprolactone triblock and multiblock copolymer aqueous solutions. Macromolecules 39:4873–4879

    CAS  Google Scholar 

  91. Huh KM, Bae YH (1999) Synthesis and characterization of poly(ethylene glycol)/poly(l-lactic acid) alternating multiblock copolymers. Polymer 40:6147–6155

    CAS  Google Scholar 

  92. Bae YH, Huh KM, Kim Y, Park KH (2000) Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications. J Control Release 64:3–13

    CAS  Google Scholar 

  93. Lee J, Bae YH, Sohn YS, Jeong B (2006) Thermogelling aqueous solutions of alternating multiblock copolymers of poly(l-lactic acid) and poly(ethylene glycol). Biomacromolecules 7:1729–1734

    CAS  Google Scholar 

  94. Joo MK, Sohn YS, Jeong B (2007) Stereoisomeric effect on reverse thermal gelation of poly(ethylene glycol)/poly(lactide) multiblock copolymers. Macromolecules 40:5111–5115

    CAS  Google Scholar 

  95. Lee JW, Hua FJ, Lee DS (2001) Thermoreversible gelation of biodegradable poly(ε-caprolactone) and poly(ethylene glycol) multiblock copolymers in aqueous solutions. J Control Release 73:315–327

    CAS  Google Scholar 

  96. Lee SC, Kang SW, Kim C, Kwon IC, Jeong SY (2000) Synthesis and characterization of amphiphilic poly(2-ethyl-2-oxazoline)/poly(ε-caprolactone) alternating multiblock copolymers. Polymer 41:7091–7097

    CAS  Google Scholar 

  97. Li F, Li S, Vert M (2005) Synthesis and rheological properties of polylactide/poly(ethylene glycol) multiblock copolymers. Macromol Biosci 5:1125–1131

    Google Scholar 

  98. Lee J, Joo MK, Oh H, Sohn YS, Jeong B (2006) Injectable gel: poly(ethylene glycol)-sebacic acid polyester. Polymer 47:3760–3766

    CAS  Google Scholar 

  99. Loh XJ, Goh SH, Li J (2007) New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules 8:585–593

    CAS  Google Scholar 

  100. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    CAS  Google Scholar 

  101. Philippova OE, Hourdet D, Audebert R et al (1997) pH-responsive gels of hydrophobically modified poly(acrylic acid). Macromolecules 30:8278–8285

    CAS  Google Scholar 

  102. Yang Z, Zhang Y, Markland P et al (2002) Poly(glutamic acid)/poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: synthesis, characterization, and preliminary release studies of protein drugs. J Biomed Mater Res 62:14–21

    CAS  Google Scholar 

  103. Park SY, Bae YH (1999) Novel pH-sensitive polymers containing sulfonamide groups. Macromol Rapid Commun 20:269–273

    CAS  Google Scholar 

  104. Yin XC, Hoffman AS, Stayton PS (2006) Biomacromolecules 7:1381

    CAS  Google Scholar 

  105. He CL, Zhao CW, Chen XS et al (2008) Novel pH- and temperature-sensitive block copolymers with tunable pH-responsive range. Macromol Rapid Commun 29:490–497

    CAS  Google Scholar 

  106. Shim WS, Yoo JS, Bae YH et al (2005) Novel injectable pH and temperature sensitive block copolymer hydrogels. Biomacromolecules 6:2930–2934

    CAS  Google Scholar 

  107. Shim WS, Kim SW, Lee DS (2006) Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels. Biomacromolecules 7:1935–1941

    CAS  Google Scholar 

  108. Shim WS, Kim JH, Park H et al (2006) Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(ε-caprolactone-co-lactide)-poly(ethylene glycol)-poly (ε-caprolactone-co-lactide) block copolymer. Biomaterials 27:5178–5185

    CAS  Google Scholar 

  109. Shim WS, Kim JH, Kim K et al (2007) pH- and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carries for paclitaxel. Int J Pharm 331:11–18

    CAS  Google Scholar 

  110. Dayananda K, Pi BS, Kim BS et al (2007) Synthesis and characterization of pH/temperature-sensitive block copolymers via atom transfer radical polymerization. Polymer 48:758–762

    CAS  Google Scholar 

  111. Huynh DP, Shim WS, Kim JH et al (2006) pH/temperature sensitive poly(ethylene glycol)-based biodegradable polyester block copolymer hydrogels. Polymer 47:7918–7926

    CAS  Google Scholar 

  112. Wintersteiner O, Abramson HA (1933) The isoelectric point of insulin: electrical properties of adsorbed and crystalline insulin. J Biol Chem 99:741–753

    CAS  Google Scholar 

  113. Butun V, Armes SP, Billingham NC (2001) Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 42:5993–6008

    CAS  Google Scholar 

  114. Gohy J, Lohmeijer BGG, Varshney SK et al (2002) Stimuli-responsive aqueous micelles from an ABC metallo-supramolecullar triblock copolymer. Macromolecules 35:9748–9755

    CAS  Google Scholar 

  115. Lynn DM, Amiji MM, Langer R (2001) pH-responsive polymer microsphere: rapid release of encapsulated material within the range of intracellular pH. Angew Chem Int Ed 40:1707–1710

    CAS  Google Scholar 

  116. Lynn DM, Langer R (2000) Degradable poly(β-amino ester): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc 122:10761–10768

    CAS  Google Scholar 

  117. Yoo JS, Kim MS, Lee DS et al (2006) Novel pH and temperature-sensitive block copolymer: poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(β-amino ester). Macromol Res 14:117–120

    CAS  Google Scholar 

  118. Huynh DP, Nguyen MK, Pi BS et al (2008) Functionalized injectable hydrogel for controlled insulin delivery. Biomaterials 29:2527–2534

    CAS  Google Scholar 

  119. Dayananda K, He CL, Lee DS (2008) In situ gelling aqueous solutions of pH- and temperature-sensitive poly(ester amino urethane)s. Polymer 49:4620-4625

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a “Korea Research Foundation Grant” (KRF-2006-005-J04602)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Sung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, D.S., He, C. (2010). In-Situ Gelling Stimuli-Sensitive PEG-Based Amphiphilic Copolymer Hydrogels. In: Ottenbrite, R., Park, K., Okano, T. (eds) Biomedical Applications of Hydrogels Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5919-5_7

Download citation

Publish with us

Policies and ethics