Skip to main content

Hydrogels for Cartilage Tissue Engineering

  • Chapter
  • First Online:
Biomedical Applications of Hydrogels Handbook

Abstract

Tissue engineering is an emerging field of regenerative medicine that holds promise for the restoration of tissues and organs affected by chronic diseases, age-linked degeneration, congenital deformity, and trauma. Tissue engineering consists of building tissue and organs using cells grown on natural or artificial biomaterials outside the body. Recent efforts in bone and cartilage tissue regeneration have turned to tissue engineering, which have shown the proof of concept in clinical situations. Articular cartilage is composed of 70–80% of water retained in the form of a stable macromolecular gels. The extracellular matrix (ECM) and chondrocytes represent 20–30% of the articular cartilage. The lack of vascularization of the articular cartilage, however, prevents the development of an inflammatory response; this severely limits spontaneous repair. Currently, research is being directed to cell therapy associated with specific scaffold-like hydrogels. Articular cartilage, in particular, is considered to be a good candidate for tissue engineering, because it requires less metabolic involvement due to lower cellularity and avascular matrix. Cartilage organization and pathology have been highlighted here with respect to scaffold strategies using synthetic hydrogels as biomimetic extracellular matrices for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  CAS  Google Scholar 

  2. Vinatier C, Guicheux J, Daculsi G, Layrolle P, Weiss P (2006) Cartilage and bone tissue engineering using hydrogels. Biomed Mater Eng 16:107–113

    Google Scholar 

  3. Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28(34):5093–5099

    Article  CAS  Google Scholar 

  4. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  CAS  Google Scholar 

  5. Hwang NS, Varghese S, Elisseeff J (2008) Controlled differentiation of stem cells. Adv Drug Deliv Rev 60(2):199–214

    Article  CAS  Google Scholar 

  6. Orwin EJ, Borene ML, Hubel A (2003) Biomechanical and optical characteristics of a corneal stromal equivalent. J Biomech Eng 125(4):439–444

    Article  Google Scholar 

  7. Fatimi A, Tassin JF, Quillard S, Axelos MA, Weiss P (2008) The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials 29(5):533–543

    Article  CAS  Google Scholar 

  8. Lories RJ, Luyten FP (2005) Bone morphogenetic protein signaling in joint homeostasis and disease. Cytokine Growth Factor Rev 16(3):287–298

    Article  CAS  Google Scholar 

  9. Aigner T, Stove J (2003) Collagens–major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 55(12):1569–1593

    Article  CAS  Google Scholar 

  10. Muir H (1970) The intracellular matrix in the environment of connective tissue cells. Clin Sci 38(2):8P

    CAS  Google Scholar 

  11. Sommarin Y, Larsson T, Heinegard D (1989) Chondrocyte-matrix interactions. Attachment to proteins isolated from cartilage. Exp Cell Res 184(1):181–192

    Article  CAS  Google Scholar 

  12. Shlopov BV, Lie WR, Mainardi CL, Cole AA, Chubinskaya S, Hasty KA (1997) Osteoarthritic lesions: involvement of three different collagenases. Arthritis Rheum 40(11):2065–2074

    Article  CAS  Google Scholar 

  13. Flannery CR, Little CB, Hughes CE, Caterson B (1998) Expression and activity of articular cartilage hyaluronidases. Biochem Biophys Res Commun 251(3):824–829

    Article  CAS  Google Scholar 

  14. Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118(Pt 7):1341–1353

    Article  CAS  Google Scholar 

  15. Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4(1):30–35

    Article  CAS  Google Scholar 

  16. Dudhia J (2005) Aggrecan, aging and assembly in articular cartilage. Cell Mol Life Sci 62(19–20):2241–2256

    Article  CAS  Google Scholar 

  17. Rogers BA, Murphy CL, Cannon SR, Briggs TW (2006) Topographical variation in glycosaminoglycan content in human articular cartilage. J Bone Joint Surg Br 88(12):1670–1674

    CAS  Google Scholar 

  18. Kiani C, Chen L, Wu YJ, Yee AJ, Yang BB (2002) Structure and function of aggrecan. Cell Res 12(1):19–32

    Article  Google Scholar 

  19. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539

    Article  CAS  Google Scholar 

  20. Toole BP (2001) Hyaluronan in morphogenesis. Semin Cell Dev Biol 12(2):79–87

    Article  CAS  Google Scholar 

  21. Moreland LW (2003) Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther 5(2):54–67

    Article  CAS  Google Scholar 

  22. Gardner DL (1994) Problems and paradigms in joint pathology. J Anat 184(Pt 3):465–476

    Google Scholar 

  23. Roth V, Mow VC (1980) The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J Bone Joint Surg Am 62(7):1102–1117

    CAS  Google Scholar 

  24. Lyons TJ, Stoddart RW, McClure SF, McClure J (2005) The tidemark of the chondro-osseous junction of the normal human knee joint. J Mol Histol 36(3):207–215

    Article  CAS  Google Scholar 

  25. Poole CA, Flint MH, Beaumont BW (1988) Chondrons extracted from canine tibial cartilage: preliminary report on their isolation and structure. J Orthop Res 6(3):408–419

    Article  CAS  Google Scholar 

  26. Poole CA (1997) Articular cartilage chondrons: form, function and failure. J Anat 191(Pt 1):1–13

    Article  Google Scholar 

  27. Guilak F, Jones WR, Ting-Beall HP, Lee GM (1999) The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Osteoarthr Cartil 7(1):59–70

    Article  CAS  Google Scholar 

  28. Youn I, Choi JB, Cao L, Setton LA, Guilak F (2006) Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthr Cartil 14(9):889–897

    Article  CAS  Google Scholar 

  29. Labos M (2004) Place du traitement non pharmacologique dans la prise en charge de la gonarthrose chez 60 patients. Université Paris VI-Pierre et Marie Curie-U.F.R de Saint Antoine

    Google Scholar 

  30. Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT, Giannini EH, Heyse SP, Hirsch R, Hochberg MC, Hunder GG, Liang MH, Pillemer SR, Steen VD, Wolfe F (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 41(5):778–799

    Article  CAS  Google Scholar 

  31. Felson DT, Zhang Y, Hannan MT, Naimark A, Weissman BN, Aliabadi P, Levy D (1995) The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 38(10):1500–1505

    Article  CAS  Google Scholar 

  32. Ge Z, Hu Y, Heng BC, Yang Z, Ouyang H, Lee EH, Cao T (2006) Osteoarthritis and therapy. Arthritis Rheum 55(3):493–500

    Article  Google Scholar 

  33. Glass GG (2006) Osteoarthritis. Dis Mon 52(9):343–362

    Article  Google Scholar 

  34. Felson DT (2004) An update on the pathogenesis and epidemiology of osteoarthritis. Radiol Clin North Am 42(1):1–9, v

    Article  Google Scholar 

  35. Buckwalter JA, Martin J (1995) Degenerative joint disease. Clin Symp 47(2):1–32

    CAS  Google Scholar 

  36. Buckwalter JA (1998) Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 28(4):192–202

    CAS  Google Scholar 

  37. Buckwalter JA (2002) Articular cartilage injuries. Clin Orthop 402:21–37

    Article  Google Scholar 

  38. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    CAS  Google Scholar 

  39. Buckwalter JA, Brown TD (2004) Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin Orthop Relat Res 423:7–16

    Article  Google Scholar 

  40. Jackson DW, Lalor PA, Aberman HM, Simon TM, Jackson DW, Lalor PA, Aberman HM, Simon TM (2001) Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am 83-A(1):53–64

    CAS  Google Scholar 

  41. Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75(4):532–553

    CAS  Google Scholar 

  42. Tyyni A, Karlsson J (2000) Biological treatment of joint cartilage damage. Scand J Med Sci Sports 10(5):249–265

    Article  CAS  Google Scholar 

  43. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64(3):460–466

    CAS  Google Scholar 

  44. Elisseeff J (2004) Injectable cartilage tissue engineering. Expert Opin Biol Ther 4(12):1849–1859

    Article  CAS  Google Scholar 

  45. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  Google Scholar 

  46. Tuli R, Li WJ, Tuan RS (2003) Current state of cartilage tissue engineering. Arthritis Res Ther 5(5):235–238

    Article  CAS  Google Scholar 

  47. Chen FH, Rousche KT, Tuan RS (2006) Technology Insight: adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol 2(7):373–382

    Article  CAS  Google Scholar 

  48. Ateshian GA (2007) Artificial cartilage: weaving in three dimensions. Nat Mater 6(2):89–90

    Article  CAS  Google Scholar 

  49. Kafienah W, Jakob M, Demarteau O, Frazer A, Barker MD, Martin I, Hollander AP (2002) Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng 8(5):817–826

    Article  CAS  Google Scholar 

  50. Isogai N, Kusuhara H, Ikada Y, Ohtani H, Jacquet R, Hillyer J, Lowder E, Landis WJ (2006) Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng 12(4):691–703

    Article  CAS  Google Scholar 

  51. Darling EM, Athanasiou KA (2005) Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 23(2):425–432

    Article  CAS  Google Scholar 

  52. Domm C, Schunke M, Christesen K, Kurz B (2002) Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthr Cartil 10(1):13–22

    Article  CAS  Google Scholar 

  53. Malda J, van Blitterswijk CA, Grojec M, Martens DE, Tramper J, Riesle J (2003) Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng 9(5):939–948

    Article  CAS  Google Scholar 

  54. Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle G, Vignes-Colombeix C, Chadjichristos C, Galera P, Daculsi G, Guicheux J (2005) A silanized hydroxypropyl methylcellulose hydrogel for the three dimensional culture of chondrocytes. Biomaterials 26:6643–6651

    Article  CAS  Google Scholar 

  55. Fukui N, Purple CR, Sandell LJ (2001) Cell biology of osteoarthritis: the chondrocyte’s response to injury. Curr Rheumatol Rep 3(6):496–505

    Article  CAS  Google Scholar 

  56. Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7(6):259–264

    Article  CAS  Google Scholar 

  57. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  58. Huard J, Cao B, Qu-Petersen Z (2003) Muscle-derived stem cells: potential for muscle regeneration. Birth Defects Res C Embryo Today 69(3):230–237

    Article  CAS  Google Scholar 

  59. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5(5):362–369

    Article  Google Scholar 

  60. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  CAS  Google Scholar 

  61. De Bari C, Dell’Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44(1):85–95

    Article  Google Scholar 

  62. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  CAS  Google Scholar 

  63. Krampera M, Pasini A, Pizzolo G, Cosmi L, Romagnani S, Annunziato F (2006) Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol 6(4):435–441

    Article  CAS  Google Scholar 

  64. Devine SM, Peter S, Martin BJ, Barry F, McIntosh KR (2001) Mesenchymal stem cells: stealth and suppression. Cancer J 7(Suppl 2):S76–S82

    Google Scholar 

  65. Tuan RS (2006) Stemming cartilage degeneration: adult mesenchymal stem cells as a cell source for articular cartilage tissue engineering. Arthritis Rheum 54(10):3075–3078

    Article  CAS  Google Scholar 

  66. Nelea V, Luo L, Demers CN, Antoniou J, Petit A, Lerouge S, Wertheimer MR, Mwale F (2005) Selective inhibition of type X collagen expression in human mesenchymal stem cell differentiation on polymer substrates surface-modified by glow discharge plasma. J Biomed Mater Res A 75(1):216–223

    Google Scholar 

  67. Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54(10):3254–3266

    Article  CAS  Google Scholar 

  68. Hanada K, Solchaga LA, Caplan AI, Hering TM, Goldberg VM, Yoo JU, Johnstone B (2001) BMP-2 induction and TGF-beta 1 modulation of rat periosteal cell chondrogenesis. J Cell Biochem 81(2):284–294

    Article  CAS  Google Scholar 

  69. Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P (2006) Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58(2):300–322

    Article  CAS  Google Scholar 

  70. Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60(2):243–262

    Article  CAS  Google Scholar 

  71. Hacker M, Tessmar J, Neubauer M, Blaimer A, Blunk T, Gopferich A, Schulz MB (2003) Towards biomimetic scaffolds: anhydrous scaffold fabrication from biodegradable amine-reactive diblock copolymers. Biomaterials 24(24):4459–4473

    Article  CAS  Google Scholar 

  72. Jung Y, Park MS, Lee JW, Kim YH, Kim S-H, Kim SH (2008) Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(l-lactide-co-[var epsilon]-caprolactone). Biomaterials 29(35):4630–4636

    Article  CAS  Google Scholar 

  73. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314

    Article  CAS  Google Scholar 

  74. Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, Langer R (2000) Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51(2):164–171

    Article  CAS  Google Scholar 

  75. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R (1999) Transdermal photopolymerization for minimally invasive implantation. Proc Natl Acad Sci U S A 96(6):3104–3107

    Article  CAS  Google Scholar 

  76. Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJA (2009) The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30(3):344–353

    Article  CAS  Google Scholar 

  77. Barbucci R, Leone G, Lamponi S (2006) Thixotropy property of hydrogels to evaluate the cell growing on the inside of the material bulk (Amber effect). J Biomed Mater Res B Appl Biomater 76(1):33–40

    Google Scholar 

  78. Halloran DO, Grad S, Stoddart M, Dockery P, Alini M, Pandit AS (2008) An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials 29(4):438–447

    Article  CAS  Google Scholar 

  79. Alsberg E, Anderson KW, Albeiruti A, Rowley JA, Mooney DJ (2002) Engineering growing tissues. Proc Natl Acad Sci U S A 99(19):12025–12030

    Article  CAS  Google Scholar 

  80. Borzacchiello A, Mayol L, Ramires PA, Pastorello A, Bartolo CD, Ambrosio L, Milella E (2007) Structural and rheological characterization of hyaluronic acid-based scaffolds for adipose tissue engineering. Biomaterials 28(30):4399–4408

    Article  CAS  Google Scholar 

  81. Wallace DG, Rosenblatt J (2003) Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Deliv Rev 55(12):1631–1649

    Article  CAS  Google Scholar 

  82. Battista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, Gerbasio D, Keene DR, Ambrosio L, Netti PA (2005) The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 26(31):6194–6207

    Article  CAS  Google Scholar 

  83. Bryan N, Rhodes NP, Hunt JA (2009) Derivation and performance of an entirely autologous injectable hydrogel delivery system for cell-based therapies. Biomaterials 30(2):180–188

    Article  CAS  Google Scholar 

  84. Vinatier C, Gauthier O, Masson M, Malard O, Moreau A, Fellah BH, Bilban M, Spaethe R, Daculsi G, Guicheux J (2008) Nasal chondrocytes and fibrin sealant for cartilage tissue engineering. J Biomed Mater Res A 89(1):176–185

    Google Scholar 

  85. Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21(23):2405–2412

    Article  CAS  Google Scholar 

  86. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53

    Article  CAS  Google Scholar 

  87. Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA (1995) Injectable cartilage. Plast Reconstr Surg 96(6):1390–1398

    Article  CAS  Google Scholar 

  88. Leone G, Delfini M, Di Cocco ME, Borioni A, Barbucci R (2008) The applicability of an amidated polysaccharide hydrogel as a cartilage substitute: structural and rheological characterization. Carbohydr Res 343(2):317–327

    Article  CAS  Google Scholar 

  89. Weng L, Romanov A, Rooney J, Chen W (2008) Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran. Biomaterials 29(29):3905–3913

    Article  CAS  Google Scholar 

  90. De Groot CJ, Van Luyn MJA, Van Dijk-Wolthuis WNE, Cadee JA, Plantinga JA, Otter WD, Hennink WE (2001) In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials 22(11):1197–1203

    Article  Google Scholar 

  91. Cadee JA, van Luyn MJ, Brouwer LA, Plantinga JA, van Wachem PB, de Groot CJ, den Otter W, Hennink WE (2000) In vivo biocompatibility of dextran-based hydrogels. J Biomed Mater Res 50(3):397–404

    Article  CAS  Google Scholar 

  92. Revell PA, Damien E, Di Silvio L, Gurav N, Longinotti C, Ambrosio L (2007) Tissue engineered intervertebral disc repair in the pig using injectable polymers. J Mater Sci Mater Med 18(2):303–308

    Article  CAS  Google Scholar 

  93. Adelow C, Segura T, Hubbell JA, Frey P (2008) The effect of enzymatically degradable poly(ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials 29(3):314–326

    Article  CAS  Google Scholar 

  94. Raeber GP, Lutolf MP, Hubbell JA (2007) Mechanisms of 3-D migration and matrix remodeling of fibroblasts within artificial ECMs. Acta Biomater 3(5):615–629

    Article  CAS  Google Scholar 

  95. Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54(1):37–51

    Article  CAS  Google Scholar 

  96. Tirelli N, Lutolf MP, Napoli A, Hubbell JA (2002) Poly(ethylene glycol) block copolymers. Rev Mol Biotechnol 90(1):3–15

    Article  CAS  Google Scholar 

  97. Cohn D, Sosnik A, Garty S (2005) Smart hydrogels for in situ generated implants. Biomacromolecules 6(3):1168–1175

    Article  CAS  Google Scholar 

  98. Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr (1997) Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res 235(1):13–21

    Article  CAS  Google Scholar 

  99. Perka C, Spitzer RS, Lindenhayn K, Sittinger M, Schultz O (2000) Matrix-mixed culture: new methodology for chondrocyte culture and preparation of cartilage transplants. J Biomed Mater Res 49(3):305–311

    Article  CAS  Google Scholar 

  100. Chang SC, Rowley JA, Tobias G, Genes NG, Roy AK, Mooney DJ, Vacanti CA, Bonassar LJ (2001) Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J Biomed Mater Res 55(4):503–511

    Article  CAS  Google Scholar 

  101. Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25(7–8):1339–1348

    Article  CAS  Google Scholar 

  102. Temenoff JS, Athanasiou KA, LeBaron RG, Mikos AG (2002) Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res 59(3):429–437

    Article  CAS  Google Scholar 

  103. Turczyn R, Weiss P, Lapkowski M, Daculsi G (2000) In situ self hardening bioactive composite for bone and dental surgery. J Biomater Sci Polym Ed 11(2):217–223

    Article  CAS  Google Scholar 

  104. Bourges X, Weiss P, Coudreuse A, Daculsi G, Legeay G (2002) General properties of silated hydroxyethyl cellulose for potential biomedical applications. Biopolymers 63(4):232–238

    Article  CAS  Google Scholar 

  105. Bourges X, Weiss P, Daculsi G, Legeay G (2002) Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv Colloid Interface Sci 99(3):215–228

    Article  CAS  Google Scholar 

  106. Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80(1):66–74

    CAS  Google Scholar 

  107. Vinatier C, Gauthier O, Fatimi A, Merceron C, Masson M, Moreau A, Moreau F, Fellah B, Weiss P, Guicheux J (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102(4):1259–1267

    Article  CAS  Google Scholar 

  108. Sosnik A, Cohn D (2004) Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers. Biomaterials 25(14):2851–2858

    Article  CAS  Google Scholar 

  109. Liu Y, Chan-Park MB (2009) Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30(2):196–207

    Article  CAS  Google Scholar 

  110. Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH (2007) In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 119(1):112–120

    Article  CAS  Google Scholar 

  111. Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 27(1):12–21

    Article  CAS  Google Scholar 

  112. Hwang NS, Varghese S, Lee HJ, Theprungsirikul P, Canver A, Sharma B, Elisseeff J (2007) Response of zonal chondrocytes to extracellular matrix-hydrogels. FEBS Lett 581(22):4172–4178

    Article  CAS  Google Scholar 

  113. Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, Cascio B, Elisseeff JH (2007) Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nature Mater 6(5):385–392

    Article  CAS  Google Scholar 

  114. Buckley MR, Gleghorn JP, Bonassar LJ, Cohen I (2008) Mapping the depth dependence of shear properties in articular cartilage. J Biomech 41(11):2430–2437

    Article  Google Scholar 

  115. Mi FL, Tan YC, Liang HF, Sung HW (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23(1):181–191

    Article  CAS  Google Scholar 

  116. Huin-Amargier C, Marchal P, Payan E, Netter P, Dellacherie E (2006) New physically and chemically crosslinked hyaluronate (HA)-based hydrogels for cartilage repair. J Biomed Mater Res A 76(2):416–424

    Google Scholar 

  117. Weng L, Chen X, Chen W (2007) Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromolecules 8(4):1109–1115

    Article  CAS  Google Scholar 

  118. Boelen EJH, van Hooy-Corstjens CSJ, Bulstra SK, van Ooij A, van Rhijn LW, Koole LH (2005) Intrinsically radiopaque hydrogels for nucleus pulposus replacement. Biomaterials 26(33):6674–6683

    Article  CAS  Google Scholar 

  119. Jin R, Hiemstra C, Zhong Z, Feijen J (2007) Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials 28(18):2791–2800

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Weiss, P., Fatimi, A., Guicheux, J., Vinatier, C. (2010). Hydrogels for Cartilage Tissue Engineering. In: Ottenbrite, R., Park, K., Okano, T. (eds) Biomedical Applications of Hydrogels Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5919-5_13

Download citation

Publish with us

Policies and ethics