Skip to main content

Composite Hydrogels for Scaffold Design, Tissue Engineering, and Prostheses

  • Chapter
  • First Online:
Biomedical Applications of Hydrogels Handbook

Abstract

Hydrogels have been successfully used in several biomedical applications, such as controlled drug release and micro-patterning. More recently, the ability to engineer composite hydrogels has generated new opportunities in addressing challenges in tissue engineering as well as in tissue function restoration via prostheses. Indeed, the knowledge of biocompatible materials and preparation technologies may be efficaciously used in synthesizing biocompatible hydrogels to develop state-of-the-art hydrogel-based devices for tissue regeneration and reconstruction. Important details with respect to the design of the materials adopted and with respect to specific tissues, such as tendons and ligaments, intervertebral discs, bone, menisci, and cartilage will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology 13:565–576

    Article  CAS  Google Scholar 

  2. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    Article  CAS  Google Scholar 

  3. Woerly S (1997) Porous hydrogels for neural tissue engineering. Porous Mater Tissue Eng 250:53–68

    CAS  Google Scholar 

  4. Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 99:9996–10010

    Article  CAS  Google Scholar 

  5. Shu XZ, Ahmad S, Liu YC et al (2006) Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. J Biomed Mater Res A 79A:902

    Article  CAS  Google Scholar 

  6. Matthew HW, Salley SO, Peterson WD et al (1993) Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol Prog 9:510–519

    Article  CAS  Google Scholar 

  7. Kopecek J, Yang J (2007) Hydrogels as smart materials. Polym Int 56:1078–1098

    Article  CAS  Google Scholar 

  8. Campoccia D, Doherty P, Radice M et al (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127

    Article  CAS  Google Scholar 

  9. Wichterle O, Lim D (1960) Hydrophilic gels in biologic use. Nature 185:117

    Article  Google Scholar 

  10. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12

    Article  Google Scholar 

  11. Alblas FNE, De Wijn JR J et al (2007) Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng 13(8):1905–1925

    Article  Google Scholar 

  12. Ambrosio L, Netti PA, Iannace S et al (1996) Composite hydrogels for intervertebral disc prostheses. J Mater Sci Mater Med 7:251–254

    Article  CAS  Google Scholar 

  13. Netti PA, Shelton JC, Revell PA et al (1993) Hydrogels as an interface between bone and an implant. Biomaterials 14(14):1098–1104

    Article  CAS  Google Scholar 

  14. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Google Scholar 

  15. Netti PA, D’Amore A, Ronca D et al (1996) Structure-mechanical properties relationship of natural tendons and ligaments. J Mater Sci Mater Med 7:525–530

    Article  CAS  Google Scholar 

  16. De Santis R, Sarracino F, Mollica F, Netti PA, Ambrosio L, Nicolais L (2004) Continuous fibre reinforced polymers as connective tissue replacement. Comp Sci Technol 64:861–871

    Article  Google Scholar 

  17. Iannace S, Sabatini G, Ambrosio L et al (1995) Mechanical behaviour of composite artificial tendons and ligaments. Biomaterials 16(9):675–680

    Article  CAS  Google Scholar 

  18. Causa F, Sarracino F, De Santis R et al (2006) Basic structural parameters for the design of composite structures as ligament augmentation devices. J Appl Biomater Biomech 4:21–30

    CAS  Google Scholar 

  19. Noth U, Schupp K, Heymer A et al (2005) Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel. Cytotherapy 7(5):447–455

    Article  CAS  Google Scholar 

  20. Calve S, Dennis R, Kosnik P et al (2004) Engineering of functional tendon. Tissue Eng 10(5/6):755–761

    Article  Google Scholar 

  21. Gentleman E, Livesay G, Dee K et al (2006) Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann Biomed Eng 34(5):726–736

    Article  Google Scholar 

  22. Ouyang H, Goh J, Thambyah A et al (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit achilles tendon. Tissue Eng 9(3):431–439

    Article  CAS  Google Scholar 

  23. Cristino S, Grassi F, Toneguzzi S et al (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11 based prototype ligament scaffold. J Biomed Mater Res 73A(3):275–283

    Article  CAS  Google Scholar 

  24. Funakoshi T, Majima T, Iwasaki N et al (2005) Novel chitosan-based hyaluronan hybrid polymer fibres as a scaffold in ligament tissue engineering. J Biomed Mater Res 74A(3):338–346

    Article  CAS  Google Scholar 

  25. McPherson GK, Mendenhall HV, Gibbons DF et al (1985) Experimental mechanical and histological evaluation of the Kennedy ligament augmentation device. Clin Orthop 196:186–195

    Google Scholar 

  26. Olson EJ, Kang JD, Fu FH et al (1988) The biochemical and histological effects of artificial ligament wear particles: in vitro and in vivo studies. Am J Sports Med 16:558–570

    Article  CAS  Google Scholar 

  27. Ambrosio L, De Santis R, Nicolais L (1998) Composite hydrogels for implants. Proc Inst Mech Eng 212(Part H):93–99

    CAS  Google Scholar 

  28. Arnoczky SP, Matyas JR, Buckwalter JA et al (1963) Anatomy of the anterior cruciate ligament. In: Jackson DW (ed) The anterior cruciate ligament. Raven Press, New York, pp 5–23

    Google Scholar 

  29. Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Exp Rev Med Dev 4(3):406–418

    Article  Google Scholar 

  30. Ge Z, Yang F, Goh JCH et al (2006) Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res 77A:639–652

    Article  CAS  Google Scholar 

  31. Gershon B, Cohn D, Marom G (1990) Utilization of composite laminate theory in the design of synthetic soft tissues for biomedical prostheses. Biomaterials 11:548–552

    Article  CAS  Google Scholar 

  32. Cassidy JJ, Hiltner A, Baer A (1990) The response of the hierarchical structure of the intervertebral disc to uniaxial compression. J Mater Sci Mat Med 1:69–80

    Article  Google Scholar 

  33. Hukins DWL (2005) Tissue engineering: a live disc. Nat Mater 4(12):881–882

    Article  CAS  Google Scholar 

  34. Bao Q, McCullen GM, Higham PA et al (1996) The artificial disc: theory, design and materials. Biomaterials 17:1157–1167

    Article  CAS  Google Scholar 

  35. Cassidy JJ, Hiltner A, Baer A (1989) Hierarchical structure of the intervertebral disc. Connect Tissue Res 23(1):75–88

    Article  CAS  Google Scholar 

  36. Shikinami Y, Kotani Y, Cunningham BW et al (2004) A biomimetic artificial disc with improved mechanical properties compared to biological intervertebral discs. Adv Funct Mater 14:1039–1046

    Article  CAS  Google Scholar 

  37. Gloria A, Causa F, De Santis R et al (2007) Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis. J Mater Sci Mater Med 18:2159–2165

    Article  CAS  Google Scholar 

  38. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  Google Scholar 

  39. Davis PA, Huang SJ, Ambrosio L, Ronca D, Nicolais L (1991) A biodegradable composite artificial tendon. J Mater Sci Mater Med 3:359–364

    Article  Google Scholar 

  40. Leach JB, Bivens KA, Patrick CW, Schmidt CE (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82:578–589

    Article  CAS  Google Scholar 

  41. Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092

    Article  CAS  Google Scholar 

  42. Ciapetti G, Ambrosio L, Marletta G et al (2006) Human bone marrow stromal cells: in vitro expansion and differentiation for bone engineering. Biomaterials 27:6150–6160

    Article  CAS  Google Scholar 

  43. Savarino L, Baldini N, Greco M et al (2007) The performance of poly-ε-caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials 28:3101–3109

    Article  CAS  Google Scholar 

  44. Mikos AG, Sarakinos G, Leite SM et al (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323–330

    Article  CAS  Google Scholar 

  45. Mikos AG, Thorsen AJ, Czerwonka LA et al (1994) Preparation e and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077

    Article  CAS  Google Scholar 

  46. Mooney DJ, Mikos AG (1999) Growing new organs. Sci Am 280:60–65

    Article  CAS  Google Scholar 

  47. Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20:1783–1790

    Article  CAS  Google Scholar 

  48. Leong KF, Cheah CM, Chua CK (2003) Solid free-form fabrication of 3D scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378

    Article  CAS  Google Scholar 

  49. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  CAS  Google Scholar 

  50. Guarino V, Causa F, Salerno A et al (2008) Design and manufacture of microporous polymeric materials with hierarchical complex structure for biomedical application. Mater Sci Technol 24(9):1111–1117

    Article  CAS  Google Scholar 

  51. Lum L, Elisseeff J (2003) Injectable hydrogels for cartilage tissue engineering. In: Ashammakhi N, Ferrettivol P (eds) Topics in tissue engineering, vol 1, pp1–25, www.tissue-engineering-oc.com [ebook]

  52. Elisseeff J, Puleo C, Yang F et al (2005) Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res 8:150–161

    Article  CAS  Google Scholar 

  53. Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009–1014

    Article  CAS  Google Scholar 

  54. Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28:5093–5099

    Article  CAS  Google Scholar 

  55. Kikuchi A, Okano T (2005) Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release 101:69

    Article  CAS  Google Scholar 

  56. Roberts A, Wyslouzil BE, Bonassar L (2005) Aerosol delivery of mammalian cells for tissue engineering. Biotechnol Bioeng 91:801

    Article  CAS  Google Scholar 

  57. Nahmias Y, Arneja A, Tower TT et al (2005) Cell patterning on biological gels via cell spraying through a mask. Tissue Eng 11:701

    Article  CAS  Google Scholar 

  58. Spitzer RS, Perka C, Lindenhayn K et al (2002) Matrix engineering for osteogenic differentiation of rabbit periosteal cells using alpha-tricalcium phosphate particles in a three-dimensional fibrin culture. J Biomed Mater Res 59:690

    Article  CAS  Google Scholar 

  59. Xu XL, Lou J, Tang T et al (2005) Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. J Biomed Mater Res B Appl Biomater 75:289

    Google Scholar 

  60. Guarino V, Causa F, Netti PA et al (2008) The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 86B:548

    Article  CAS  Google Scholar 

  61. Santavirta S, Konttinen YT, Saito T et al (1990) Immune response to polyglycolic acid implants. J Bone Joint Surg Br 72:597–600

    CAS  Google Scholar 

  62. Turner NJ, Kielty CM, Walker MG et al (2004) A novel hyaluronan-based biomaterial (HYAFF 11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials 25:5955–5964

    Article  CAS  Google Scholar 

  63. Grigolo B, Roseti L, Fiorini M et al (2001) Transplantation of chondrocytes seeded on a hyaluronan derivative (HYAFF 11) into cartilage defects in rabbits. Biomaterials 22:2417–2424

    Article  CAS  Google Scholar 

  64. Solchaga LA, Dennis JE, Goldberg VM et al (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 17:205–213

    Article  CAS  Google Scholar 

  65. Solchaga LA, Gao J, Dennis JE et al (2002) Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 8:333–347

    Article  CAS  Google Scholar 

  66. Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep 34:147–230

    Article  Google Scholar 

  67. Rezwan K, Chen QZ, Blaker JJ et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  68. Chiari C, Koller U, Dorotka R et al (2006) A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis Cartilage 14:1056–1065

    Article  CAS  Google Scholar 

  69. Kon E, Chiari C, Marcacci M et al (2008) Tissue engineering for total meniscal substitution: animal study in sheep model. Tissue Eng Part A 14(6):1067–1080

    Article  CAS  Google Scholar 

  70. Veth RP, Jansen HW, Leenslag JW et al (1986) Experimental meniscal lesions reconstructed with a carbon fibre-polyurethane-poly(l-lactide) graft. Clin Orthop Relat Res 202:286–293

    CAS  Google Scholar 

  71. Cook JL, Fox DB, Malaviya P et al (2005) Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med 34:32–42

    Article  Google Scholar 

  72. Tienen TG, Heijkants RG, De Groot JH et al (2006) Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 76:389–396

    CAS  Google Scholar 

  73. Walsh CJ, Goodman D, Caplan AI et al (1999) Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng 5:327–337

    Article  CAS  Google Scholar 

  74. Martinek V, Ueblacker P, Braun K et al (2007) Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 126:228–234

    Article  Google Scholar 

  75. Weinand C, Peretti GM, Adams SBJ et al (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34:1779–1789

    Article  Google Scholar 

  76. Puelacher WC, Mooney D, Langer R et al (1994) Design of nasoseptal cartilage replacements synthesised from biodegradable polymers and chondrocytes. Biomaterials 15:774–778

    Article  CAS  Google Scholar 

  77. Buschmann MD, Gluzband YA, Grodzinsky AJ et al (1991) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose gel culture. J Cell Sci 108:1497–1508

    Google Scholar 

  78. Butnariu-Ephrat M, Robinson D, Mendes DG et al (1996) Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin Orthop Relat Res 330:234–243

    Article  Google Scholar 

  79. Homming GN, Buma P, Koot HWJ et al (1993) Chondrocyte behaviour in fibrin glue in vitro. Acta Orthop Scand 64:441–445

    Article  Google Scholar 

  80. Wakitani S, Kimura T, Hirooka A et al (1989) Repair of articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg 71B:74–80

    Google Scholar 

  81. Grandolfo P, D’andrea P, Paoletti M et al (1993) Culture and differentiation of chondrocytes entrapped in alginate beads. Calcif Tissue Int 52:42–48

    Article  CAS  Google Scholar 

  82. Lima EG, Mauck RL, Han SH et al (2004) Functional tissue engineering of chondral and osteochondral constructs. Biorheology 41(3–4):577–590

    Google Scholar 

  83. Shimko DA, Shimko VF, Sander EA et al (2005) Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J Biomed Mater Res B Appl Biomater 73(2):315–324

    Google Scholar 

  84. Mow V, Holmes M, Lai W (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17(5):377–394

    Article  CAS  Google Scholar 

  85. Sander EA, Nauman EA (2003) Permeability of musculoskeletal tissues and scaffolding materials: experimental results and theoretical predictions. Crit Rev Biomed Eng 31(1–2):1–26

    Article  Google Scholar 

  86. Hui PW, Leung PC, Sher A (1996) Fluid conductance of cancellous bone graft as a predictor for graft–host interface healing. J Biomech 29(1):123–132

    Article  CAS  Google Scholar 

  87. Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polymer 46:4676–4685

    Article  CAS  Google Scholar 

  88. Ulbrich K, Strohalm J, Kopeček J (1982) Polymers containing enzymatically degradable bonds. 6. Hydrophilic gels cleavable by chymotrypsin. Biomaterials 3:150–154

    Article  CAS  Google Scholar 

  89. Wang C, Kopeček J, Stewart RJ (2001) Hybrid hydrogels crosslinked by genetically engineered coiled-coil block proteins. Biomacromolecules 2:912–920

    Article  CAS  Google Scholar 

  90. Nagahara S, Matsuda T (1996) Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polymer Gels Networks 4:111–127

    Article  CAS  Google Scholar 

  91. De Jong SJ, De Smedt SC, Wahls MWC, Demeester J (2000) Kettenes-van den Bosch JJ, Hennink WE. Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33:3680–3686

    Article  Google Scholar 

  92. Miyata T, Asami T, Uragami T (1999) A reversibly antigen-responsive hydrogels. Nature 399:766–769

    Article  CAS  Google Scholar 

  93. Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacromolecules 6:2927–2929

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ambrosio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guarino, V., Gloria, A., De Santis, R., Ambrosio, L. (2010). Composite Hydrogels for Scaffold Design, Tissue Engineering, and Prostheses. In: Ottenbrite, R., Park, K., Okano, T. (eds) Biomedical Applications of Hydrogels Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5919-5_12

Download citation

Publish with us

Policies and ethics