Skip to main content

An Integrated Methodology for Mining Promiscuous Proteins: A Case Study of an Integrative Bioinformatics Approach for Hepatitis C Virus Non-structural 5a Protein

  • Conference paper
  • First Online:
Advances in Computational Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 680))

Abstract

A methodology for elucidation of structural, functional, and mechanistic knowledge on promiscuous proteins is proposed that constitutes a workflow of integrated bioinformatics analysis. Sequence alignments with closely related homologues can reveal conserved regions which are functionally important. Scanning protein motif databases, along with secondary and surface accessibility predictions integrated with post-translational modification sites (PTMs) prediction reveal functional and protein-binding motifs. Integrating this information about the protein with the GO, SCOP, and CATH annotations of the templates can help to formulate a 3D model with reasonable accuracy even in the case of distant sequence homology. A novel integrative model of the non-structural protein 5A of Hepatitis C virus: a hub promiscuous protein with roles in virus replication and host interactions is proposed. The 3D structure for domain II was predicted based on, the Homo sapiens Replication factor-A protein-1 (RPA1), as a template using consensus meta-servers results. Domain III is an intrinsically unstructured domain with a fold from the retroviral matrix protein, which conducts diverse protein interactions and is involved in viral replication and protein interactions. It also has a single-stranded DNA-binding protein motif (SSDP) signature for pyrimidine binding during viral replication. Two protein-binding motifs with high sequence conservation and disordered regions are proposed; the first corresponds to an Interleukin-8B receptor signature (IL-8R-B), while the second has a lymphotoxin beta receptor (LTβR) high local similarity. A mechanism is proposed to their contribution to NS5A Interferon signaling pathway interception. Lastly, the overlapping between LTβR and SSDP is considered as a sign for NS5A date hubs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rychlewski L, Fischer D (2005) LiveBench-8: The large-scale, continuous assessment of automated protein structure prediction. Prot Sci 14:240–245.

    Article  CAS  Google Scholar 

  2. Gsponer J, Madan Babu M (2009) The rules of disorder or why disorder rules. Prog Biophys & Mol Biol. doi: 10.1016/j.pbiomolbio.2009.03.001.

    Google Scholar 

  3. Dunker A K, Cortese M S, Romero P, Iakoucheva L M, Uversky V N (2005) Flexible nets: The roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148.

    Article  PubMed  CAS  Google Scholar 

  4. Basu M K, Poliakov E, Rogozin I B (2009) Domain mobility in proteins: functional and evolutionary implications. Brief Bioinform 10(3):205–216.

    Article  PubMed  CAS  Google Scholar 

  5. Macdonald A, Harris M (2004) Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol 85:2485–2502.

    Article  PubMed  CAS  Google Scholar 

  6. Pei J, Grishin N V (2007) PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 23(7):802–808.

    Article  PubMed  CAS  Google Scholar 

  7. Hall T A (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98.

    CAS  Google Scholar 

  8. Cheng J (2007) DOMAC: an accurate, hybrid protein domain prediction server. Nucl Acids Res 35:354–356.

    Article  Google Scholar 

  9. Gewehr J E, Zimmer R (2006) SSEP-domain: protein domain prediction by alignment of secondary structure elements and profiles. Bioinformatics 22(2):181–187.

    Article  PubMed  CAS  Google Scholar 

  10. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:19–20.

    Article  Google Scholar 

  11. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucl Acids Res 32:W321–W326.

    Article  PubMed  CAS  Google Scholar 

  12. McGuffin L J, Bryson K, Jones D T (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405.

    Article  PubMed  CAS  Google Scholar 

  13. Cheng J, Randall A, Sweredoski M, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucl Acids Res 33:72–76.

    Article  Google Scholar 

  14. Karplus K et al (2005) SAM-T04: what is new in protein-structure prediction for CASP6. Proteins 61(7):135–142.

    Article  PubMed  CAS  Google Scholar 

  15. Pollastri G, Martin A J M, Mooney C, Vullo A (2007) Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinformatics 8:201.

    Article  PubMed  Google Scholar 

  16. Hulo N, Bairoch A, Bulliard V et al (2008) The 20 years of PROSITE. Nucl Acids Res 36:D245–D249.

    Article  PubMed  CAS  Google Scholar 

  17. Henikoff J G, Greene E A, Pietrokovski S, Henikoff S (2000) Increased coverage of protein families with the blocks database servers. Nucl Acids Res 28:228–230.

    Article  PubMed  CAS  Google Scholar 

  18. Ponting C P, et al (1999) SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucl Acids Res 27: 229–232.

    Article  PubMed  CAS  Google Scholar 

  19. Wan J et al (2008) Meta-prediction of phosphorylation sites with weighted voting and restricted grid search parameter selection. Nucl Acids Res 36: e22.

    Article  PubMed  Google Scholar 

  20. Altschul S F, et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402.

    Article  PubMed  CAS  Google Scholar 

  21. Pearson W R (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183:63–98.

    Article  PubMed  CAS  Google Scholar 

  22. Sæbø P E, Andersen S M, Myrseth J, Laerdahl J K, Rognes T (2005) PARALIGN: rapid and sensitive sequence similarity searches powered by parallel computing technology. Nucl Acids Res 33:535–539.

    Article  Google Scholar 

  23. Walsh T P et al (2008) SCANPS: a web server for iterative protein sequence database searching by dynamic programming, with display in a hierarchical SCOP browser. Nucl Acids Res 36:W25–W29.

    Article  PubMed  CAS  Google Scholar 

  24. Kaján L, Rychlewski L (2007) Evaluation of 3D-Jury on CASP7 models. BMC Bioinformatics 8:304.

    Article  PubMed  Google Scholar 

  25. Pettersen E F, Goddard T D, Huang C C et al (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612.

    Article  PubMed  CAS  Google Scholar 

  26. Krivov G G, Shapovalov M V, Dunbrack R L (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins doi: 10.1002/prot.22488.

    PubMed  Google Scholar 

  27. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics 22:195–201.

    Article  PubMed  CAS  Google Scholar 

  28. El-Hefnawi M, El-Behaidy W, Youssif A, Ghalwash A, El-Housseiny L A, Zada Z (2009) Natural genetic engineering of Hepatitis C virus NS5A for immune system counterattack. Nat Gen Eng and Nat Genome Editing: Ann NY Acad Sci 1178:173–185.

    Article  CAS  Google Scholar 

  29. El-Hefnawi M, Youssif A, Ghalwash A, El-Behaidy W (2009) An integrative in silico model of Hepatitis C virus non-structural 5a protein. Int Conf Bioinf Comput Biol, BIOCOMP’09:827–833.

    Google Scholar 

  30. Jacobs D M, Lipton A S, Isern N G et al (1999) Human replication protein A: global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker. J Biomol NMR 14:321–331.

    Article  PubMed  CAS  Google Scholar 

  31. Christensen A M, Massiah M A, Turner B G, Sundquist W I, Summers M F (1996) Three-dimensional structure of the HTLV-II matrix protein and comparative analysis of matrix proteins from the different classes of pathogenic human retroviruses. J Mol Biol 264(5):1117–1131.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

ElHefnawi, M.M., Youssif, A.A., Ghalwash, A.Z., Behaidy, W.H.E. (2010). An Integrated Methodology for Mining Promiscuous Proteins: A Case Study of an Integrative Bioinformatics Approach for Hepatitis C Virus Non-structural 5a Protein. In: Arabnia, H. (eds) Advances in Computational Biology. Advances in Experimental Medicine and Biology, vol 680. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5913-3_34

Download citation

Publish with us

Policies and ethics