Advertisement

Fuzzy Sets and Fuzzy Logic-Based Methods in Multicriteria Decision Analysis

Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 142)

Abstract

In this chapter, we discuss some fuzzy sets and fuzzy logic-based methods for multicriteria decision aid. Alternatives are identified with score vectors x ∈ [0, 1] n , and thus they can be seen as fuzzy sets, too. After discussion of integral-based utility functions, we introduce a transformation of score x into fuzzy quantity U(x). Orderings on fuzzy quantities induce orderings on alternatives. A special attention is paid to defuzzification-based orderings, especially to mean of maxima method. Our approach allows an easy incorporation of importance of criteria. Finally, a fuzzy logic-based construction method to build complete preference structures over set of alternatives is given.

Keyword

Fuzzy set Fuzzy quantity Fuzzy utility Dissimilarity Defuzzification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Aczel. On mean values. Bulletin of the American Mathematical Society, 54:392–400, 1948.CrossRefGoogle Scholar
  2. 2.
    C. Alsina, M.J. Frank, and B. Schweizer. Associative Functions: Triangular Norms and Copulas. World Scientific, Singapore, 2006.CrossRefGoogle Scholar
  3. 3.
    G. Beliakov, T. Calvo, and A. Pradera. Aggregation Functions: A Guide for Practitioners. Springer Verlag, Berlin, 2007.Google Scholar
  4. 4.
    R. Calvo, T. Mesiar and R.R. Yager. Quantitative weights and aggregation. IEEE Transactions on Fuzzy Systems, 12(1):62–69, 2004.CrossRefGoogle Scholar
  5. 5.
    T. Calvo, A. Kolesárová, M. Komorníková, and R. Mesiar. Aggregation operators: Properties, classes and construction methods. In T. Calvo, G. Mayor, and R. Mesiar, editors, Studies in Fuzziness and Soft Computing-Aggregation Operators. New Trends and Applications, pages 3–106. Physica-Verlag, Heidelberg, 2002.Google Scholar
  6. 6.
    T. Calvo, G. Mayor, and R. Mesiar, editors. Studies in Fuzziness and Soft Computing-Aggregation Operators. New Trends and Aplications. Physica-Verlag, Heidelberg, 2002.Google Scholar
  7. 7.
    A.C. Chiang. Fundamental Methods of Mathematical Economics. McGraw-Hill, Columbus, OH, third edition, 1984.Google Scholar
  8. 8.
    G. Choquet. Theory of capacities. Annales de l’Institut Fourier, 5:131–292, 1953/54.Google Scholar
  9. 9.
    D. Dubois, Ph. Fortemps, M. Pirlot, and H. Prade. Leximin optimality and fuzzy set-theoretic operations. European Journal of Operational Research, 130:20–28, 2002.CrossRefGoogle Scholar
  10. 10.
    D. Dubois, E.E. Kerre, R. Mesiar, and H. Prade. Fuzzy interval analysis. In D. Dubois and H. Prade, editors, Fundamentals of Fuzzy Sets, volume 1 of The Handbook of Fuzzy Set Series, pages 483–582. Kluwer Academic Publishers, Boston, 2000.Google Scholar
  11. 11.
    D. Dubois and H. Prade. Refining aggregation operators in finite ordinal scales. In J.M. Garibaldi and R.I. John, editors, Proceedings of the 2nd International Conference in Fuzzy Logic and Technology, Leicester, United Kingdom, September 5–7, 2001, pages 175–178. European Society for Fuzzy Logic and Technology, 2001.Google Scholar
  12. 12.
    D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.Google Scholar
  13. 13.
    J.C. Fodor and M. Roubens. Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, 1994.Google Scholar
  14. 14.
    M.A. Gil and P. Jain. Comparison of experiments in statistical decision problems with fuzzy utilities. IEEE Transactions on Systems, Man and Cybernetics, 22:662–670, 1992.Google Scholar
  15. 15.
    S. Giove, S. Greco, and B. Matarazzo. Level dependent capacities and the generalized Choquet integral. In D. Dubois, E.P. Klement, and R. Mesiar, editors, Proceedings of the 28th Linz Seminar on Fuzzy Set Theory, Linz, Austria, February 6–10, 2007, pages 54–55. Johannes Kepler University, Linz, Austria, 2007.Google Scholar
  16. 16.
    M. Grabisch. Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems, 69: 279–298, 1995.CrossRefGoogle Scholar
  17. 17.
    M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation Functions, volume 127 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, UK, 2009.Google Scholar
  18. 18.
    M. Grabisch, T. Murofushi, and M. Sugeno, editors. Fuzzy Measures and Integrals, Theory and Applications. Physica-Verlag, Heidelberg, 2000.Google Scholar
  19. 19.
    E.P. Klement. Characterization of finite fuzzy measures using markoff-kernels. Journal of Mathematical Analysis and Applications, 75:330–339, 1980.CrossRefGoogle Scholar
  20. 20.
    E.P. Klement and R. Mesiar, editors. Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam, 2005.Google Scholar
  21. 21.
    E.P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
  22. 22.
    G.J. Klir and T.A. Folger. Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs, 1988.Google Scholar
  23. 23.
    D. Kyselová, D. Dubois, M. Komorníková, and R. Mesiar. Refining aggregation operator-based orderings in multifactorial evaluation – part i.: Continuous scales. IEEE Transactions on Fuzzy Systems, 15:1100–1106, 2007.Google Scholar
  24. 24.
    M.O. Lorenz. Methods of measuring concentration of wealth. Journal of the American Statistical Association, 9:209–219, 1905.CrossRefGoogle Scholar
  25. 25.
    M. Mareš. Computation Over Fuzzy Quantities. CRC Press, Boca Raton, 1994.Google Scholar
  26. 26.
    M. Mareš and R. Mesiar. Composition of shape generators. Acta Mathematica et Informatica Universitatis Ostraviensis, 4:37–45, 1996.Google Scholar
  27. 27.
    M. Mareš and R. Mesiar. Calculation over verbal variables. In J. Kacprzyk and L.A. Zadeh, editors, Computing with Words in Information/Intelligent Systems, pages 409–427. Physica-Verlag, Heidelberg, 1999.Google Scholar
  28. 28.
    M. Mareš and R. Mesiar. Verbally generated fuzzy quantities and their aggregation. In T. Calvo, G. Mayor, and R. Mesiar, editors, Aggregation Operators, pages 291–352. Physica-Verlag, Heidelberg, 2002.Google Scholar
  29. 29.
    R. Mesiar, K. Ahmad, and A. Mesiarová Zemánková. Comonotone maxitivity and extended Sugeno integral. In L. Mgdalena, M. Ojeda-Aciego, and J.L. Verdegay, editors, Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU’2008, Malaga, Spain, June 22–27, 2008, pages 1484–1489, 2008.Google Scholar
  30. 30.
    R. Mesiar and J. Špirková. Weighted means and weighted functions. Kybernetika, 42:151–160, 2006.Google Scholar
  31. 31.
    R. Mesiar, J. Špirková, and L. Vavríková. Weighted aggregation operators based on minimization. Information Sciences, 178:1133–1140, 2008.CrossRefGoogle Scholar
  32. 32.
    R. Nelsen. An Introduction to Copulas. Lecture Notes in Statistics. Springer Verlag, New York, 1999.Google Scholar
  33. 33.
    R.A. Ribeiro and R.A.M. Pereira. Weights as functions of attribute satisfaction values. In B. De Baets, M. Delgado, J. Fodor, F. Herrera, E. Herrera-Viedma, and L. Martinez, editors, Proceedings of the EUROFUSE Workshop on Preference Modelling and Applications, Granada, Spain, April 25–27, 2001, 2001.Google Scholar
  34. 34.
    R.A. Ribeiro and R.A.M. Pereira. Aggregation with generalized mixture operators using weighting functions. Fuzzy Sets and Systems, 137:43–58, 2003.CrossRefGoogle Scholar
  35. 35.
    R.A. Ribeiro and R.A.M. Pereira. Generalized mixture operators using weighting functions: A comparative study with WA and OWA. European Journal of Operational Research, 145:329–342, 2003.CrossRefGoogle Scholar
  36. 36.
    M. Sugeno. Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974.Google Scholar
  37. 37.
    V. Torra and Y. Narukawa. Modelling Decision: Information Fusion and Aggregation Operators. Springer Verlag, Berlin, 2007.Google Scholar
  38. 38.
    J. Šipoš. Integral with respect to a pre-measure. Mathematica Slovaca, 29:141–155, 1979.Google Scholar
  39. 39.
    X. Wang and E.E. Kerre. Reasonable properties for the ordering of fuzzy quantities (i). Fuzzy Sets and Systems, 118:375–385, 2001.CrossRefGoogle Scholar
  40. 40.
    X. Wang and E.E. Kerre. Reasonable properties for the ordering of fuzzy quantities (ii). Fuzzy Sets and Systems, 118:387–405, 2001.CrossRefGoogle Scholar
  41. 41.
    R..R. Yager. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man and Cybernetics, 18:183–190, 1988.Google Scholar
  42. 42.
    R.R. Yager and D. Filev. Essentials of Fuzzy Modelling and Control. John Wiley & Sons, New York, 1994.Google Scholar
  43. 43.
    R.R. Yager and A. Rybalov. Uninorm aggregation operators. Fuzzy Sets and Systems, 80: 111–120, 1994.CrossRefGoogle Scholar
  44. 44.
    R.R. Yager and A. Rybalov. Understanding the median as a fusion operator. International Journal of General Systems, 26:239–263, 1997.CrossRefGoogle Scholar
  45. 45.
    Ch.-H. Yeh and H. Deng. A practical approach to fuzzy utilities comparison in fuzzy multicriteria analysis. International Journal of Approximate Reasoning, 35:179–194, 2004.CrossRefGoogle Scholar
  46. 46.
    L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.CrossRefGoogle Scholar
  47. 47.
    L.A. Zadeh. Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications, 23:421–427, 1968.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations