Skip to main content

Fetal Imaging of the Chest

  • Chapter
  • First Online:
Imaging in Pediatric Pulmonology

Abstract

Ultrasonography (US) is the screening method of choice for the evaluation of the fetal airway and chest. It is safe, inexpensive and easily performed. Advances in US technique including higher resolution transducers, Doppler and 3D/4D imaging have allowed for improved assessment of the congenital thoracic masses. The assessment of the fetal chest by US, however, is operator dependent and evaluation may be limited due to fetal position, maternal obesity, overlying bone and/or oligohydramnios. Ultrasound evaluation is sensitive in the diagnosis of many prenatal lung lesions but has low specificity. Magnetic resonance imaging (MRI) is an alternative modality that uses no ionizing radiation, has excellent tissue contrast, a large field of view, is not limited by obesity or overlying bone and can image the fetus in multiple planes regardless of fetal lie. Faster scanning techniques allow studies to be performed without sedation in the second and third trimester with minimal motion artifact. Fetal MRI helps confirm the presence of masses identified by US, can delineate anatomy such as the trachea not visualized by US and may demonstrate additional subtle anomalies. Advances in US and MRI have improved our ability to accurately diagnose fetal airway and chest anomalies and furthered our understanding of the evolution of fetal lung lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kline-Fath BM. Is prenatal sonography accurate in identification of Congenital lung lesions? Scientific paper presented at SPR, Boston, MA. April 15; 2010.

    Google Scholar 

  2. Breysem L, Bosmans H, Dymarkowski S, et al. The value of fast MR imaging as an adjunct to ultrasound in prenatal diagnosis. Eur Radiol. 2003;13:1538–48.

    Article  PubMed  CAS  Google Scholar 

  3. Quinn TM, Hubbard AM, Adzick NS. Prenatal MRI enhance fetal diagnosis. J Pediatr Surg. 1998;33:553–8.

    Article  PubMed  CAS  Google Scholar 

  4. Bulas DI. Fetal magnetic resonance imaging as a complement to fetal ultrasonography. Ultrasound Q. 2007;23(1):3–22.

    Article  PubMed  Google Scholar 

  5. Aite L, Zaccara A, Trucchi A, et al. When uncertainty generates more anxiety than severity: the prenatal experience with cystic adenomatoid malformation of the lung. J Perinat Med. 2009;37:539–42.

    Article  PubMed  Google Scholar 

  6. Ruano R, Joubin L, Abry MC, et al. Anomogram of fetal lung volumes estimated by 3D US using the roataional technique (virtual organ computer aided analysis). J Ultrasound Med. 2006;35:701–9.

    Google Scholar 

  7. Harmath A, Csaba A, Hauzman E, et al. Congenital lung malformations in the second trimester: prenatal ultrasound diagnosis and pathologic findings. J Clin Ultrasound. 2007;35(5):250–5.

    Article  PubMed  Google Scholar 

  8. Lecompte B, Hadden H, Coste K, et al. Hyperechoic congenital lung lesions in a non-selected population: from prenatal detection till perinatal management. Prenat Diagn. 2009;29:1222–30.

    Article  Google Scholar 

  9. Ankerman T, Oppermann HC, Engler S, et al. Congenital masses of the lung, cystic adenomatoid malformation versus congenital lobar emphysema: prenatal diagnosis and implications for postnatal treatment. J Ultrasound Med. 2004;23:1379–84.

    Google Scholar 

  10. Johnson AM, Hubbard AM. Congenital anomalies of the fetal/neonatal chest. Semin Roentgenol. 2004;39:197–214.

    Article  PubMed  Google Scholar 

  11. Coakley FV, Glenn OA, Qayyam A, et al. Fetal MRI: a developing technique for the developing patient. AJR. 2004;182:243–52.

    PubMed  Google Scholar 

  12. Prayer D, Brugger PC, Prayer L. Fetal MRI: techniques and protocols. Pediatr Radiol. 2004;34:685–93.

    Article  PubMed  Google Scholar 

  13. Baker PN, Johnson IR, Harvey PR, et al. A three year follow up children imaged in utero with echoplanar magnetic resonance. Am J Obstet Gynecol. 1994;170:32–3.

    PubMed  CAS  Google Scholar 

  14. De Wilde JP, Rivers AW, Price DU, et al. A review of the current use of magnetic resonance imaging in pregnancy and safety implications for the fetus. Prog Biophys Mol Biol. 2005;87:335.

    Article  PubMed  Google Scholar 

  15. Yip YP, Capriotti C, Tlagala SL, et al. Effects of MR exposure at 1.5 T on early embryonic development of the chick. J Magn Reson Imaging. 1994;4:742–8.

    Article  PubMed  CAS  Google Scholar 

  16. Yip YP, Capriotti C, Yip JW. Effects of MR exposure on axonal outgrowth in the sympathetic nervous system of the chick. J Magn Reson Imaging. 1995;5:457–62.

    Article  PubMed  CAS  Google Scholar 

  17. Vadeyar SH, Moore RJ, Strachan BK, et al. Effect of fetal magnetic resonance imaging on fetal heart rate patterns. Am J Obstet Gynecol. 2000;182:666–9.

    Article  PubMed  CAS  Google Scholar 

  18. Mevissen M, Buntenkotter S, Loscher W. Effect of static and time varying magnetic field on reproduction and fetal development in rats. Teratology. 1994;50:229–37.

    Article  PubMed  CAS  Google Scholar 

  19. Shellock FG, Kanal E. Policies, guidelines and recommendations for MR imaging safety and patient management. JMRI. 1991;1:97–101.

    Article  PubMed  CAS  Google Scholar 

  20. United Nations Scientific Committee on the effects of atomic radiation. Ionizing radiation levels and effects. 1972 report to the General Assembly Vol 2 Effects New York, NY; 1972

    Google Scholar 

  21. Hand JW, Li Y, Thomas EL, et al. Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med. 2006;55:883–93.

    Article  PubMed  CAS  Google Scholar 

  22. Frates MC, Kumar AJ, Benson CB, et al. Fetal anomalies: comparison of MR imaging and US for diagnosis. Radiology. 2004;232:398–404.

    Article  PubMed  Google Scholar 

  23. Levine D, Barnewolt CE, Mehta TS, et al. Fetal thoracic abnormalities: MR imaging. Radiology. 2003;228:379–88.

    Article  PubMed  Google Scholar 

  24. Kunisaki SM, Fauza DO, Barnewolt CE, et al. Exutero intrapartum treatment with placement of extracorporeal membrane oxygenation for fetal thoracic masses. J Pediatr Surg. 2007;42(2):420–5.

    Article  PubMed  Google Scholar 

  25. Daltro P, Werner H, Gasparetto TD, et al. Congenital chest malformations: a multimodality approach with emphasis on fetal MR Imaging. Radiographics. 2010;30:385–95.

    Article  PubMed  Google Scholar 

  26. Curran PF, Jelin EB, Rand L, et al. Prenatal steroids for microcystic congenital cystic adenomatoid malformations. J Pediatr Surg. 2010;45:145–50.

    Article  PubMed  Google Scholar 

  27. Azizkhan RG, Crombleholme TM. Congenital cystic lung disease: contemporary antenatal and postnatal management. Pediatr Surg Int. 2008;24:643–57.

    Article  PubMed  Google Scholar 

  28. Adzick NS. Management of fetal lung lesions. Clin Perinatol. 2009;36:363–76.

    Article  PubMed  Google Scholar 

  29. Kumar AN. Perinatal management of common neonatal thoracic lesions. Indian J Pediatr. 2008;75:931–7.

    Article  PubMed  Google Scholar 

  30. Bush A, Hogg J, Chitty LS. Cystic lung lesions – prenatal diagnosis and management. Prenat Diagn. 2008;28:604–11.

    Article  PubMed  Google Scholar 

  31. Cavoretto P, Molina F, Poggi S, et al. Prenatal diagnosis and outcome of echogenic fetal lung lesions. Ultrasound Obstet Gynecol. 2008;32:769–83.

    Article  PubMed  CAS  Google Scholar 

  32. Stocker TJ, Manewell JE, Drake RM. Congenital cystic adenomatoid malformation of the lung: classification and morphologic spectrum. Hum Pathol. 1977;8:155–71.

    Article  PubMed  CAS  Google Scholar 

  33. Crombleholme TM, Coleman B, Hedrick H, et al. Cystic adenomatoid malformation volume ratio predicts outcome in prenatally diagnosed cystic adenomatoid malformation of the lung. J Pediatr Surg. 2002;37(3):331–8.

    Article  PubMed  Google Scholar 

  34. Mann S, Wilson RD, Bebbington MW, et al. Antenatal diagnosis and management of congenital cystic adenomatoid malformation. Semin Fetal Neonatal Med. 2007;12:477–81.

    Article  PubMed  Google Scholar 

  35. Coleman BG, Adzick NS, Crombleholme TM, et al. Fetal therapy: state of the art. J Ultrasound Med. 2002;21:1257–88.

    PubMed  Google Scholar 

  36. Morris LM, Lim FY, Livingston JC, et al. High-risk fetal congenital pulmonary airway malformations have a variable response to steroids. J Pediatr Surg. 2009;2004:60–5.

    Article  Google Scholar 

  37. Kunisaki SM, Barnewolt CE, Estroff JA, et al. Large fetal congenital cystic adenomatoid malformations: growth trends and patient survival. J Pediatr Surg. 2007;42(2):404–10.

    Article  PubMed  Google Scholar 

  38. Knox EM, Kilby MD, Martin WL, et al. In-utero pulmonary drainage in the management of primary hydrothorax and congenital cystic lung lesion: a systematic review. Ultrasound Obstet Gynecol. 2006;28:726–34.

    Article  PubMed  CAS  Google Scholar 

  39. Fortunato S, Lombardo S, Dantrell J. Intrauterine laser ablation of a fetal cystic adenomatoid malformation with hydrops: the application of minimally invasive surgical techniques to fetal surgery. Am J Obstet Gynecol. 1997;177:S84.

    Article  Google Scholar 

  40. Adzick NS. Open fetal surgery for life-threatening fetal anomalies. Semin Fetal Neonatal Med. 2009; (epub ahead of print).

    Google Scholar 

  41. Bermudez C, Perez-Wulff J, Arcadipane M, et al. Percutaneous fetal sclerotherapy for congenital cystic adenomatoid malformation of the lung. Fetal Diagn Ther. 2008;24:237–40.

    Article  PubMed  Google Scholar 

  42. Marshall KW, Blane CE, Teitelbaum DH, et al. Congenital cystic adenomatoid malformation: impact of prenatal diagnosis and changing strategies in the treatment of the asymptomatic patient. AJR. 2000;175:1551–4.

    PubMed  CAS  Google Scholar 

  43. Vijayaraghavan SB, Rao PS, Selvarasu CD, et al. Prenatal sonographic features of intralobar bronchopulmonary sequestration. J Ultrasound Med. 2003;22:541–4.

    PubMed  Google Scholar 

  44. Sepulveda W. Perinatal imaging in bronchopulmonary sequestration. J Ultrasound Med. 2009;28:89–94.

    PubMed  Google Scholar 

  45. Zeidan S, Gorincour G, Potier A, et al. Congenital lung malformation: evaluation of prenatal and postnatal radiologic findings. Respirology. 2009;14:1005–11.

    Article  PubMed  Google Scholar 

  46. Witlox RS, Lopriore E, Rikkers-Mutsaerts ER, et al. Single-needle laser treatment with drainage of hydrothorax in fetal bronchopulmonary sequestration with hydrops. Ultrasound Obstet Gynecol. 2009;34:355–7.

    Article  PubMed  CAS  Google Scholar 

  47. Oepkes D, Devlieger R, Lopriore E, et al. Successful ultrasound-guided laser treatment of fetal hydrops caused by pulmonary sequestration. Ultrasound Obstet Gynecol. 2007;29:457–9.

    Article  PubMed  CAS  Google Scholar 

  48. Ruano R, de A Pimenta EJ, Marques da Silva M, et al. Percutaneous intrauterine laser ablation of the abnormal vessel in pulmonary sequestration with hydrops at 29 weeks’ gestation. J Ultrasound Med. 2007;26:1235–41.

    Google Scholar 

  49. Becmeur F, Horta-Geraud P, Donato L, et al. Pulmonary sequestrations: prenatal ultrasound diagnosis, treatment and outcome. J Pediatr Surg. 1998;33:492–6.

    Article  PubMed  CAS  Google Scholar 

  50. Seo T, Ando H, Kaneko K, et al. Two cases of prenatally diagnosed congenital lobar emphysema caused by lobar bronchial atresia. J Pediatr Surg. 2006;41:E17–20.

    Article  PubMed  Google Scholar 

  51. Pariente G, Aviram M, Landau D, et al. Prenatal diagnosis of congenital lobar emphysema: case report and review of the literature. J Ultrasound Med. 2009;28:1081–4.

    PubMed  Google Scholar 

  52. Peranteau WH, Merchant AM, Hedrick HL, et al. Prenatal Course and postnatal management of peripheral bronchial atresia: association with congenital cystic adenomatoid malformation of the lung. Fetal Diagn Ther. 2008;24:190–6.

    Article  PubMed  Google Scholar 

  53. Aubard Y, Derouineau I, Aubard V, et al. Primary fetal hydrothorax: a literature review and proposed antenatal clinical strategy. Fetal Diagn Ther. 1998;13:325–33.

    Article  PubMed  CAS  Google Scholar 

  54. Chaoui R, Kalache K, Tennstedt C, et al. Pulmonary arterial Doppler velocimetry in fetuses with lung hypoplasia. Eur J Obstet Gynecol Repord Biol. 1999;84:179–85.

    Article  CAS  Google Scholar 

  55. Keller TM, Rake A, Michel SC, Seifert B, et al. MR assessment of fetal lung development using lung volumes and signal intensities. Eur Radiol. 2004;14(6):984–9.

    Article  PubMed  Google Scholar 

  56. Osada H, Kaku K, Masuda K, Iitsuka Y, Seki K, Sekiya S. Quantitative and qualitative evaluations of fetal lung with MR imaging. Radiology. 2004;231:887–92.

    Article  PubMed  Google Scholar 

  57. Tanigaki S, Miyakoshi K, Tanaka M, et al. Pulmonary hypoplasia: prediction with use of ratio of MRI measured fetal lung volume to US estimated fetal body weight. Radiology. 2004;232:767–72.

    Article  PubMed  Google Scholar 

  58. Ward VL, Nishino M, Hatabu H, et al. Fetal lung volume measurements: determination with MR imaging – effect of various factors. Radiology. 2006;240(1):187–93.

    Article  PubMed  Google Scholar 

  59. Williams G, Coakley FV, Qayyum A, et al. Fetal relative lung volume: quantification by using prenatal MR imaging lung volumetry. Radiology. 2004;233:457–62.

    Article  PubMed  Google Scholar 

  60. Keller TM, Rake A, Michel SC, Seifert B, Wisser J, et al. MR assessment of fetal lung development using lung volumes and signal intensities. Eur Radiol. 2004;14(6):984–9.

    Article  PubMed  Google Scholar 

  61. Kuwashima S, Nishimura G, Limura F, et al. Low intensity fetal lungs on MRI may suggest the diagnosis of pulmonary hypoplasia. Pediatr Radiol. 2001;31:669–72.

    Article  PubMed  CAS  Google Scholar 

  62. Zaretsky M, Ramus R, McIntire D, et al. MR calculation of lung volumes to predict outcome in fetuses with genitourinary abnormalities. Am J Roentgenol. 2005;185(5):1328–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy Bulas MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bulas, D., Egloff, A. (2012). Fetal Imaging of the Chest. In: Cleveland, R. (eds) Imaging in Pediatric Pulmonology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5872-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5872-3_18

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5871-6

  • Online ISBN: 978-1-4419-5872-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics