Skip to main content

Position Control of MEMS

  • Chapter
  • First Online:
Book cover Feedback Control of MEMS to Atoms
  • 1292 Accesses

Abstract

The miniaturization of actuators by microelectromechanical systems (MEMS) allows an increased mechanical bandwidth that can be utilized for improving response speed and control accuracy. MEMS also brings new control problems, such as control of electrostatic microactuators, to inspire both the MEMS and control communities to work together. This chapter will present recent developments of MEMS feedback control from the perspectives of application, design method, and implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Akiyama, U. Staufer, N.F. de Rooij et al. Integrated atomic force microscopy array probe with metal-oxide-semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal-oxide-semiconductor electronics. J. Vac. Sci. Technol. B: 2669–2675, 2000

    Google Scholar 

  2. B.V. Amini, R. Abdolvand et al. A 4.5-mW closed-loop ∑ \nolimits Δ micro-gravity CMOS SOI accelerometer. IEEE J. Solid-State Circuits: 2983–2991, 2006

    Google Scholar 

  3. K.J. Åström and B. Wittenmark. Adaptive control. 2nd ed., Dover Publications, 2008

    Google Scholar 

  4. M. Athans and P.L. Falb. Optimal control: an introduction to the theory and its applications, McGraw-Hill, New York, 1966

    MATH  Google Scholar 

  5. H. Baltes, O. Brand, A. Hierlemann et al. CMOS MEMS – present and future. Proc. of IEEE Int. Conf. on Micro Electro Mechanical Systems: 459–466, 2002

    Google Scholar 

  6. D. Barrettino, S. Hafizovic, T. Volden et al. CMOS monolithic mechatronic microsystem for surface imaging and force response studies. IEEE J. Solid-State Circuits: 951–959, 2005

    Google Scholar 

  7. G. Binnig, C.F. Quate, C. Gerber. Atomic force microscope. Phys. Rev. Lett.: 930–933, 1986

    Google Scholar 

  8. N. Blanc, J. Brugger, N.F. de Rooij et al. Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors. J. Vac. Sci. Technol. B: 901–905, 1996

    Google Scholar 

  9. J.J. Blech. On isothermal squeeze films. J. Lubrication Tech.: 615–620, 1983

    Google Scholar 

  10. H.W. Bode. Network analysis and feedback amplifier design, Van Nostrand, Princeton, NJ, 1945

    Google Scholar 

  11. B. Borovic, F.L. Lewis, D. Agonafer et al. Method for determining a dynamic state-space model for control of thermal MEMS devices. IEEE/ASME J. Microelectromech. Syst.: 961–969, 2005

    Google Scholar 

  12. B. Borovic, F.L. Lewis, A.Q. Liu et al. The lateral instability problem in electrostatic comb drive actuators: modeling and feedback control. J. Micromech. Microeng.: 1233–1241, 2006

    Google Scholar 

  13. B.E. Boser and R.T. Rowe. Surface micromachined accelerometers. IEEE J. Solid-State Circuits: 366–375, 1996

    Google Scholar 

  14. A.V. Chavan and K.D. Wise. Batched-processed vacuum-sealed capacitive pressure sensors. IEEE/ASME J. Microelectromech. Syst.: 580–588, 2001

    Google Scholar 

  15. C. T. Chen. Linear system theory and design, Oxford University Press, USA, 1998

    Google Scholar 

  16. J. Chen, W. Weingartner et al. Tilt-angle stabilization of electrostatically actuated micromechanical mirrors beyond the pull-in point. IEEE/ASME J. Microelectromech. Syst.: 988–997, 2004

    Google Scholar 

  17. P. Cheung, R. Horowitz, R.T. Howe. Design, fabrication, position sensing, and control of an electrostatically-driven polysilicon microactuator. IEEE Trans. Magnetics: 122–128, 1996

    Google Scholar 

  18. P. Chu, I. Brener, C. Pu et al. Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch. IEEE/ASME J. Microelectromech. Syst.: 261–273, 2005

    Google Scholar 

  19. U. Dürig and H.R. Steinauer et al. Dynamic force microscopy by means of the phase-controlled oscillator method. J. Appl. Phys.: 3641–3651, 1997

    Google Scholar 

  20. E. Eleftheriou, T. Antonakopoulos et al. Millipede – a MEMS-based scanning-probe data-storage system. IEEE Trans. Magnetics: 938–945, 2003

    Google Scholar 

  21. L.S. Fan, T. Hirano, J. Hong et al. Electrostatic microactuator and design considerations for HDD applications. IEEE Trans. Magnetics: 1000–1005, 1999

    Google Scholar 

  22. G. Fedder, R. Howe. Multimode digital control of a suspended polysilicon microstructure. IEEE/ASME J. Microelectromech. Syst.:283–297, 1996

    Google Scholar 

  23. G.F. Franklin, J.D. Powell, and L.W. Workman. Digital control of dynamic systems, Addison Wesley Longman, Inc, 1998

    MATH  Google Scholar 

  24. R.A. Freeman and P.V. Kokotovic. Robust nonlinear control design: state-space and Lyapunov techniques, Birkhäuser, Boston, 2008

    MATH  Google Scholar 

  25. J. Freudenberg, D. Looze. Frequency domain properties of scalar and multivariable feedback systems. Springer, Berlin, Heidelberg, 1988

    MATH  Google Scholar 

  26. T.B. Gabrielson. Mechanical–thermal noise in micromachined acoustic and vibration sensors. IEEE Trans. Elec. Dev.: 903–909, 1993

    Google Scholar 

  27. O. Gasparyan. Linear and nonlinear multivariable feedback control: a classical approach, Wiley, 2008

    Google Scholar 

  28. J.K. Gimzewski and C. Joachim. Nanoscale science of single molecules using local probes. Science: 1683–1688, 1999

    Google Scholar 

  29. A. Gola, F. Pasolini, and E. Chiesa et al. A 2.5 rad/s2 resolution digital output MEMS-based rotational accelerometer for HDD applications. IEEE Trans. Magnetics: 915–919, 2003

    Google Scholar 

  30. F. Golnaraghi and B.C. Kuo. Automatic control systems, 9th ed., Wiley, 2009

    Google Scholar 

  31. M. Gopal. Control systems principals and design, McGraw-Hill, 2003

    Google Scholar 

  32. P.R. Gray, P.J. Hurst, S.H. Lewis et al. Analysis and design of analog integrated circuits, 4th ed., Wiley, 2001

    Google Scholar 

  33. H.G. Hansma. Surface biology of DNA by atomic force microscopy. Annu. Rev. Phys. Chem.: 71–92, 2001

    Google Scholar 

  34. D. Hernandez, S. Park, R. Horowitz et al. Dual-stage track-following servo design for hard disk drives. Proc. American Automatic Control Conference: 4116–4121, 1999

    Google Scholar 

  35. G. Herrmann, C. Edwards, B. Hredzak et al. A novel discrete-time sliding mode technique and its application to a HDD dual-stage track-seek and track-following servo system. Int. J. Adapt. Control Signal Process: 344–358, 2008

    Google Scholar 

  36. T. Hirano, L.S. Fan, J.Q. Gao et al. MEMS milliactuator for hard-disk-drive tracking servo. IEEE/ASME J. Microelectromech. Syst.:149–155, 1998

    Google Scholar 

  37. I.M. Horowitz. Synthesis of feedback systems, Academic Press, 1965

    Google Scholar 

  38. I.M. Horowitz and M. Sidi. Synthesis of feedback systems with large plant ignorance for prescribed time-domain tolerances. Int. J. Control: 287–309, 1972

    MATH  Google Scholar 

  39. R. Horowitz, Y. Li, K. Oldham et al. Dual-stage servo systems and vibration compensation in computer hard disk drives. Control Eng. Pract.: 291–305, 2007

    Google Scholar 

  40. D.A. Horsley, R. Horowitz, A.P. Pisano. Microfabricated electrostatic actuators for hard disk drives. IEEE/ASME Trans. Mechatronics: 175–183, 1998

    Google Scholar 

  41. D.A. Horsley, N. Wongkomet, R. Horowitz et al. Precision positioning using a microfabricated electrostatic actuator. IEEE Trans. Magnetics: 993–999, 1999

    Google Scholar 

  42. A. Izadian, L.A. Hornak, and P. Famouri. Structure rotation and pull-in voltage control of MEMS lateral comb resonators under fault conditions. IEEE Trans. Control Syst. Technol.: 51–59, 2009

    Google Scholar 

  43. D.A. John and K. Martin. Analog integrated circuit design, Wiley, 1997

    Google Scholar 

  44. T.W. Kenny, S.B. Waltman, J.K. Reynolds et al. Micromachined silicon tunneling sensor for motion detection. Appl. Phys. Lett.: 100–102, 1991

    Google Scholar 

  45. Y. Kim and S. Lee. An approach to dual-stage servo design in computer disk drives. IEEE Trans. Control Syst. Technol.: 12–20, 2004

    MathSciNet  Google Scholar 

  46. Y. Kim, H. Nam, S. Cho et al. PZT cantilever array integrated with piezoresistor sensor for high-speed parallel operation of AFM. Sensors Actuators A: 122–129, 2003

    Google Scholar 

  47. G.T.A. Kovacs. Micromachined transducers sourcebook, McGraw-Hill Education, 2000

    Google Scholar 

  48. M. Krstic, I. Kanellakopoulos, P.V. Kokotovic. Nonlinear and adaptive control design, Wiley-Interscience, 1995

    Google Scholar 

  49. H. Külah, J. Chae, N. Yazdi et al. Noise analysis and characterization of a sigma-delta capacitive microaccelerometer. IEEE J. Solid-State Circuits: 352–361, 2006

    Google Scholar 

  50. M. Lantz, H. Rothuizen, U. Drechsler et al. A vibration resistant nanopositioner for mobile parallel-probe storage applications. IEEE/ASME J. Microelectromech. Syst.: 130–139, 2007

    Google Scholar 

  51. M. Lemkin and B.E. Boser. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE J. Solid-State Circuits: 456–468, 1999

    Google Scholar 

  52. Y. Li and R. Horowitz. Mechatronics of electrostatic microactuators for computer disk drive dual-stage servo systems. IEEE/ASME Trans. Mechatronics: 111–121, 2001

    Google Scholar 

  53. Y. Li and R. Horowitz. Design and testing of track-following controllers for dual-stage servo systems with pzt actuated suspensions. Microsystem Technologies: 194–205, 2002

    Google Scholar 

  54. C. Liu and T. Kenny. A high-precision, wide-bandwidth micromachined tunneling accelerometer. IEEE/ASME J. Microelectromech. Syst.:425–433, 2001

    Google Scholar 

  55. M.S.C. Lu. Parallel-plate micro servo for probe-based data storage, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 2002

    Google Scholar 

  56. M.S.C. Lu and G.K. Fedder. Position control of parallel-plate microactuators for probe-based data storage. IEEE/ASME J. Microelectromech. Syst.:759–769, 2004

    Google Scholar 

  57. J.M. Maciejowski. Multivariable feedback design, Addison-Wesley, 1989

    Google Scholar 

  58. S.C. Minne, G. Yaralioglu, S.R. Manalis et al. Automated parallel high-speed atomic force microscopy. Appl. Phys. Lett.: 2340–2342, 1998

    Google Scholar 

  59. K. Mori, T. Munemoto, H. Otsuki et al. A dual-stage magnetic disk drive actuator using a piezoelectric device for a high track density. IEEE Trans. Magnetics: 5298–5300, 1991

    Google Scholar 

  60. R. Nadal-Guardia, A. Dehé, R. Aigner et al. Current drive methods to extend the range of travel of electrostatic microactuators beyond the voltage pull-in point. IEEE/ASME J. Microelectromech. Syst.: 255–263, 2002

    Google Scholar 

  61. H.C. Nathanson, W.E. Newell, R.A. Wickstrom et al. The resonant gate transistor. IEEE Trans. Electronic. Dev.: 117–133, 1967

    Google Scholar 

  62. Y. Nemirovsky and O. Bochobza-Degani. A methodology and model for the pull-in parameters of electrostatic actuators. IEEE/ASME J. Microelectromech. Syst.: 601–615, 2001

    Google Scholar 

  63. K. Ogata. Discrete-Time Control Systems, 2nd ed., Prentice Hall, 1995

    Google Scholar 

  64. A. Pantazi, A. Sebastian, G. Cherubini et al. Control of MEMS-based scanning probe data-storage devices. IEEE Trans. Control Syst. Technol.: 824–841, 2007

    Google Scholar 

  65. V.P. Petkov and B.E. Boser. A fourth-order ∑ \nolimits Δ interface for micromachined inertia sensors. IEEE J. Solid-State Circuits: 1602–1609, 2005

    Google Scholar 

  66. D. Piyabongkarn, Y. Sun, R. Rajamani et al, Travel range extension of a MEMS electrostatic microactuator. IEEE Trans. Control Syst. Technol.: 138–145, 2005

    Google Scholar 

  67. S. Sastry. Nonlinear systems: Analysis, stability, and control. Springer, 1999

    Google Scholar 

  68. P.R. Scheeper, B. Nordstrand, J.O. Gullov et al. A new measurement microphone based on MEMS technology. IEEE/ASME J. Microelectromech. Syst.: 880–891, 2003

    Google Scholar 

  69. R. Schreier and G.C. Temes. Understanding delta-sigma data converters, IEEE Press, Wiley-Interscience, 2005

    Google Scholar 

  70. S.J. Schroeck, W.C. Messner, R.J. McNab. On compensator design for linear time-invariant dual-input single-output systems. IEEE/ASME Trans. Mechatronics: 50–57, 2001

    Google Scholar 

  71. J.I. Seeger and B.E. Boser. Charge control of parallel-plate, electrostatic actuators and the tip-in instability. IEEE/ASME J. Microelectromech. Syst.: 656–671, 2003

    Google Scholar 

  72. M.J. Sidi. Design of robust control systems: from classical to modern practical approaches. Krieger Publishing Company, 2001

    Google Scholar 

  73. S. Skogestad and I. Postlethwaite. Multivariable feedback control: Analysis and design, 2nd ed., Wiley-Interscience, 2005

    Google Scholar 

  74. J.E. Slotine and W. Li. Applied nonlinear control. Prentice Hall, 1991

    Google Scholar 

  75. W.C. Tang, T.C.H. Nguyen, M.W. Judy et al. Electrostatic-comb drive of lateral polysilicon resonators. Sensors Actuators A: 328–331, 1990

    Google Scholar 

  76. M. Tartagni and R. Guerrieri. A fingerprint sensor based on the feedback capacitance sensing scheme. IEEE J. Solid-State Circuits: 133–142, 1998

    Google Scholar 

  77. F.G. Tseng, C.J. Kim, C.M. Ho. A high-resolution high- frequency monolithic top-shooting microinjector free of satellite drops – Part I: concept, design, and model. IEEE/ASME J. Microelectromech. Syst.: 427–436, 2002

    Google Scholar 

  78. V.I. Utkin. Sliding modes in control and optimization, Springer-Verlag, New York, 1992

    MATH  Google Scholar 

  79. P.F. Van Kessel, L.J. Hornbeck, R.E. Meier et al. MEMS-based projection display. Proc. IEEE: 1687–1704, 1998

    Google Scholar 

  80. T. Veijola, H. Kuisma, J. Lahdenperä et al. Equivalent-circuit model of the squeezed gas film in a silicon accelerometer. Sensors Actuators A: 239–248, 1995

    Google Scholar 

  81. H.H. Woodson and J.R. Melcher. Electromechanical dynamics, Part I: discrete systems, Wiley, New York, 1968

    Google Scholar 

  82. M.L. Workman. Adaptive proximate time-optimal servomechanisms, Ph.D. thesis, Stanford University, Stanford, CA

    Google Scholar 

  83. Y. Zhao, F.E.H. Tay, F.S. Chau et al. Stabilization of dual-axis micromirrors beyond the pull-in point by integral sliding mode control. J. Micromech. Microeng.: 1242–1250, 2006

    Google Scholar 

  84. K. Zhou and J.C. Doyle. Essentials of robust control, Prentice Hall, 1998

    Google Scholar 

  85. J. Zou, C. Liu, J. Schutt-Aine et al. Development of a wide-tuning-range two-parallel-plate tunable capacitor for integrated wireless communication systems. Int. J. RF Microwave Computer-aided Engineering: 322–329, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S.-C. Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lu, M.SC. (2012). Position Control of MEMS. In: Gorman, J., Shapiro, B. (eds) Feedback Control of MEMS to Atoms. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5832-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5832-7_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5831-0

  • Online ISBN: 978-1-4419-5832-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics