Skip to main content

Automated Tip-Based 2-D Mechanical Assembly of Micro/Nanoparticles

  • Chapter
  • First Online:
Feedback Control of MEMS to Atoms

Abstract

In this chapter, we demonstrate automated control approaches to micro/nanomanipulation with an atomic force microscope (AFM) to increase speed and reliability. A combination of micro/nanoscale physical models, mathematical transformations, and control theory is utilized to achieve our objectives. We use fast and robust particle detection algorithms to detect positions of spherical micro/nanoparticles on a substrate from visual or topographical feedback, respectively. We demonstrate through experimental results that it is possible to push and pull particles on a flat surface into defined patterns, autonomously using an AFM probe tip, with an error less than the particle diameter and with success rates as high as 86%. By detecting contact loss through either visual or force feedback for micro- and nanomanipulation, we bring control to the conventional blind push-and-look approach. Patterns or assemblies of particles are made using a commanding task planner that orders individual manipulation operations based on a minimization of a trajectory blockage metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. A. G. Requicha, “Nanorobots, nems, and nanoassembly,” Proc. IEEE, vol. 91, no. 11, pp. 1922–1933, Nov. 2003.

    Article  Google Scholar 

  2. B. Chui and L. Kissner, “Nanorobots for mars eva repair,” in Proc. Int. Conference on Environmental Systems (ICES), July 2000.

    Google Scholar 

  3. P. Pillai, J. Campbell, G. Kedia, S. Moudgal, and K. Sheth, “A 3D fax machine based on claytronics,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 9–15, 2006, pp. 4728–4735.

    Google Scholar 

  4. A. Menciassi, A. Eisinberg, I. Izzo, and P. Dario, “From “macro” to “micro” manipulation: models and experiments,” IEEE/ASME Trans. Mechatronics, vol. 9, no. 2, pp. 311–320, 2004.

    Article  Google Scholar 

  5. R. Fearing, “Survey of sticking effects for micro parts handling,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems 95. “Human Robot Interaction and Cooperative Robots”, vol. 2, 1995, pp. 212–217.

    Google Scholar 

  6. M. Sitti, “Microscale and nanoscale robotics systems [grand challenges of robotics],” IEEE Robotics Automation Magazine, vol. 14, no. 1, pp. 53–60, Mar. 2007.

    Article  Google Scholar 

  7. S. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 181, no. 1, pp. 1–11, 2006.

    Article  Google Scholar 

  8. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed., vol. 46, no. 33, pp. 6238–6258, 2007.

    Article  Google Scholar 

  9. S. Marua and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser & Photonics Reviews, vol. 2, no. 1-2, pp. 100–111, 2008.

    Article  Google Scholar 

  10. J. J. Gorman and N. G. Dagalakis, “Probe-based micro-scale manipulation and assembly using force feedback,” in Proc. International Conference on Robotics and Remote Systems for Hazardous Environments, 2006.

    Google Scholar 

  11. A. Requicha, S. Meltzer, R. Resch, D. Lewis, B. Koel, and M. Thompson, “Layered nanoassembly of three-dimensional structures,” in Proc. ICRA Robotics and Automation IEEE International Conference on, S. Meltzer, Ed., vol. 4, 2001, pp. 3408–3411 vol.4.

    Google Scholar 

  12. M. Sitti, “Atomic force microscope probe based controlled pushing for nanotribological characterization,” IEEE/ASME Trans. Mechatronics, vol. 9, no. 2, pp. 343–349, 2004.

    Article  Google Scholar 

  13. A. Burkle, F. Schmoeckel, H. Worn, B. P. Amavasai, F. Caparrelli, and J. R. Travis, “A versatile vision system for micromanipulation tasks,” in Proc. Int. Conference on Multisensor Fusion and Integration for Intelligent Systems, 2001.

    Google Scholar 

  14. Y. Ahn, T. Ono, and M. Esashi, “Si multiprobes integrated with lateral actuators for independent scanning probe applications,” J. Micromech.Microeng, vol. 15, pp. 1224–1229, 2005.

    Article  Google Scholar 

  15. F. Dionnet, D. Haliyo, and S. Regnier, “Autonomous micromanipulation using a new strategy of accurate release by rolling,” in Proc. IEEE International Conference on Robotics and Automation ICRA ’04, D. Haliyo, Ed., vol. 5, 2004, pp. 5019–5024 Vol.5.

    Google Scholar 

  16. T. Kasaya, H. T. Miyazaki, S. Saito, K. Koyano, T. Yamaura, and T. Sato, “Image-based autonomous micromanipulation system for arrangement of spheres in a scanning electron microscope,” Review of Scientific Instruments, vol. 75, no. 6, pp. 2033–2042, 2004.

    Article  Google Scholar 

  17. S. Saito, T. Motokado, K. J. Obata, and K. Takahashi, “Capillary force with a concave probe-tip for micromanipulation,” Applied Physics Letters, vol. 87, no. 23, p. 234103, 2005.

    Article  Google Scholar 

  18. K. Castelino, S. Satyanarayana, and M. Sitti, “Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly,” Robotica, vol. 23, no. 4, pp. 435–439, 2005.

    Article  Google Scholar 

  19. C. Gosse and V. Croquette, “Magnetic tweezers: Micromanipulation and force measurement at the molecular level,” Biophysical Journal, vol. 82, pp. 3314–3329, June 2002.

    Article  Google Scholar 

  20. L. Zheng, S. Li, P. Burke, and J. Brody, “Towards single molecule manipulation with dielectrophoresis using nanoelectrodes,” in Proc. Third IEEE Conference on Nanotechnology IEEE-NANO 2003, S. Li, Ed., vol. 1, 2003, pp. 437–440 vol. 2.

    Google Scholar 

  21. A. Subramanian, B. Vikramaditya, B. Nelson, D. Bell, and L. Dong, “Dielectrophoretic micro/nanoassembly with microtweezers and nanoelectrodes,” in Proc. th International Conference on Advanced Robotics ICAR ’05, B. Vikramaditya, Ed., 2005, pp. 208–215.

    Google Scholar 

  22. K.-F. Bohringer, K. Goldberg, M. Cohn, R. Howe, and A. Pisano, “Parallel microassembly with electrostatic force fields,” in Proc. IEEE International Conference on Robotics and Automation, K. Goldberg, Ed., vol. 2, 1998, pp. 1204–1211 vol. 2.

    Google Scholar 

  23. C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating quantum dots to nanometer precision by control of flow,” Nature Photonics, 2010 (submitted).

    Google Scholar 

  24. A. J. Berglund, K. McHale, and H. Mabuchi, “Feedback localization of freely diffusing fluorescent particles near the optical shot-noise limit,” Opt. Lett., vol. 32, pp. 145–147, 2007.

    Article  Google Scholar 

  25. C. Onal and M. Sitti, “Visual servoing-based autonomous 2-D manipulation of microparticles using a nanoprobe,” IEEE Trans. Control Syst. Technol., vol. 15, no. 5, pp. 842–852, 2007.

    Article  Google Scholar 

  26. V. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212–222, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Onal and A. Sabanovic, “Plant behaviour dictation using a sliding mode model reference controller,” in Proc. 9th IEEE International Workshop on Advanced Motion Control, A. Sabanovic, Ed., 2006, pp. 243–248.

    Google Scholar 

  28. A. Sabanovic, L. M. Fridman, and S. Spurgeon, Eds., Variable structure systems: from principles to implementation. IEE Control Series, vol. 66, The Institute of Electrical Engineers, London, 2004.

    Google Scholar 

  29. B. Bhushan, Handbook of Micro/Nano Tribology, 2nd ed. CRC Press, 1999.

    Google Scholar 

  30. S. Saito, H. T. Miyazaki, T. Sato, and K. Takahashi, “Kinematics of mechanical and adhesional micromanipulation under a scanning electron microscope,” Journal of Applied Physics, vol. 92, no. 9, pp. 5140–5149, 2002.

    Article  Google Scholar 

  31. G. V. Dedkov, “Friction on the nanoscale: new physical mechanisms,” Materials Letters, vol. 38, pp. 360–366, 1999.

    Article  Google Scholar 

  32. J. A. Hurtado and K.-S. Kim, “Scale effects in friction of single-asperity contacts. I. from concurrent slip to single-dislocation-assisted slip,” Proceedings: Mathematical, Physical and Engineering Sciences, vol. 455, no. 1989, pp. 3363–3384, 1999.

    Article  MATH  Google Scholar 

  33. K. L. Johnson, “The contribution of micro/nano-tribology to the interpretation of dry friction,” Proc. Instn. Mech. Engrs., vol. 214 Part C, pp. 11–22, 2000.

    Google Scholar 

  34. R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM, vol. 15, no. 1, pp. 11–15, 1972.

    Article  MATH  Google Scholar 

  35. D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111–122, 1981.

    Article  MATH  Google Scholar 

  36. L. Xu, E. Oja, and P. Kultanen, “A new curve detection method: randomized Hough transform (RHT),” Pattern Recogn. Lett., vol. 11, no. 5, pp. 331–338, 1990.

    Article  MATH  Google Scholar 

  37. A. A. Rad, K. Faez, and N. Qaragozlou, “Fast circle detection using gradient pair vectors,” in Proc. VIIth Digital Image Computing: Techniques and Applications, O. S. Sun C. and, Talbot H. and and A. T., Eds., 2003.

    Google Scholar 

  38. B. Yilmaz, M. Unel, and A. Sabanovic, “Rigid and affine motion estimation in vision using sliding mode observers,” in Proc. IEEE International Symposium on Industrial Electronics ISIE 2005, M. Unel, Ed., vol. 1, 2005, pp. 31–36.

    Google Scholar 

  39. G. Li, N. Xi, M. Yu, and W. K. Fung, “3D nanomanipulation using atomic force microscopy,” in Proc. IEEE International Conference on Robotics and Automation ICRA ’03, vol. 3, 2003, pp. 3642–3647.

    Google Scholar 

  40. C.-K. Liu, S. Lee, L.-P. Sung, and T. Nguyen, “Load-displacement relations for nanoindentation of viscoelastic materials,” Journal of Applied Physics, vol. 100, no. 3, p. 033503, 2006.

    Article  Google Scholar 

  41. X. Tian, N. Jiao, L. Liu, Y. Wang, N. Xi, W. Li, and Z. Dong, “An AFM based nanomanipulation system with 3D nano forces feedback,” in Proc. International Conference on Intelligent Mechatronics and Automation, 2004, pp. 18–22.

    Google Scholar 

  42. R. W. Stark, F. J. Rubio-Sierra, S. Thalhammer, and W. M. Heckl, “Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection.” Eur Biophys J, vol. 32, no. 1, pp. 33–39, Mar 2003.

    Article  Google Scholar 

  43. J. H. Lü, “Nanomanipulation of extended single-DNA molecules on modified mica surfaces using the atomic force microscopy.” Colloids Surf B Biointerfaces, vol. 39, no. 4, pp. 177–180, Dec 2004.

    Article  Google Scholar 

  44. T. Junno, K. Deppert, L. Montelius, and L. Samuelson, “Controlled manipulation of nanoparticles with an atomic force microscope,” Applied Physics Letters, vol. 66, no. 26, pp. 3627–3629, 1995.

    Article  Google Scholar 

  45. D. M. Schaefer, R. Reifenberger, A. Patil, and R. P. Andres, “Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope,” Applied Physics Letters, vol. 66, no. 8, pp. 1012–1014, 1995.

    Article  Google Scholar 

  46. C. Baur, B. C. Gazen, B. Koel, T. R. Ramachandran, A. A. G. Requicha, and L. Zini, “Robotic nanomanipulation with a scanning probe microscope in a networked computing environment,” vol. 15, no. 4. AVS, 1997, pp. 1577–1580.

    Google Scholar 

  47. T. R. Ramachandran, C. Baur, A. Bugacov, A. Madhukar, B. E. Koel, A. Requicha, and C. Gazen, “Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope,” Nanotechnology, vol. 9, no. 3, pp. 237–245, 1998.

    Article  Google Scholar 

  48. M. Martin, L. Roschier, P. Hakonen, U. Parts, M. Paalanen, B. Schleicher, and E. I. Kauppinen, “Manipulation of Ag nanoparticles utilizing noncontact atomic force microscopy,” Applied Physics Letters, vol. 73, no. 11, pp. 1505–1507, 1998.

    Article  Google Scholar 

  49. S. Hsieh, S. Meltzer, C. Wang, A. Requicha, M. Thompson, and B. Koel, “Imaging and manipulation of gold nanorods with an atomic force microscope,” Journal of Physical Chemistry B, vol. 106, no. 2, pp. 231–234, 2002.

    Article  Google Scholar 

  50. B. Mokaberi and A. Requicha, “Towards automatic nanomanipulation: drift compensation in scanning probe microscopes,” in Proc. IEEE International Conference on Robotics and Automation ICRA ’04, vol. 1, 2004, pp. 416–421 Vol.1.

    Google Scholar 

  51. G. Li, N. Xi, H. Chen, C. Pomeroy, and M. Prokos, “Videolized” atomic force microscopy for interactive nanomanipulation and nanoassembly,” IEEE Trans. Nanotechnol., vol. 4, no. 5, pp. 605–615, 2005.

    Article  Google Scholar 

  52. B. Mokaberi and A. A. G. Requicha, “Drift compensation for automatic nanomanipulation with scanning probe microscopes,” Automation Science and Engineering, IEEE Transactions on, no. 3, pp. 199–207, July 2006.

    Article  Google Scholar 

  53. B. Mokaberi, J. Yun, M. Wang, and A. Requicha, “Automated nanomanipulation with atomic force microscopes,” in Proc. IEEE International Conference on Robotics and Automation, 2007, pp. 1406–1412.

    Google Scholar 

  54. C. D. Onal, B. Sumer, and M. Sitti, “Cross-talk compensation in atomic force microscopy,” Review of Scientific Instruments, vol. 79, no. 10, p. 103706, 2008.

    Article  Google Scholar 

  55. F. Krohs, C. Onal, M. Sitti, and S. Fatikow, “Towards automated nanoassembly with the atomic force microscope: A versatile drift compensation procedure,” Journal of Dynamic Systems, Measurement, and Control, vol. 131, no. 6, p. 061106, 2009.

    Google Scholar 

  56. J. E. Sader, J. W. M. Chon, and P. Mulvaney, “Calibration of rectangular atomic force microscope cantilevers,” Review of Scientific Instruments, vol. 70, no. 10, pp. 3967–3969, 1999.

    Article  Google Scholar 

  57. C. D. Onal, O. Ozcan, and M. Sitti, “Automated 2-D nanoparticle manipulation with an atomic force microscope,” in Proc. IEEE International Conference on Robotics and Automation ICRA ’09, 2009, pp. 1814–1819.

    Google Scholar 

  58. B. Sumer and M. Sitti, “Rolling and spinning friction characterization of fine particles using lateral force microscopy based contact pushing,” J. Adh. Scie. Techn., 2008.

    Google Scholar 

  59. M. Sitti and H. Hashimoto, “Controlled pushing of nanoparticles: modeling and experiments,” IEEE/ASME Trans. Mechatronics, vol. 5, no. 2, pp. 199–211, 2000.

    Article  Google Scholar 

  60. C. Onal, 2007. [Online]. Available: http://www.andrew.cmu.edu/user/cdonal/uassembly.avi

  61. O. Pitrement and M. Troyon, “General equations describing elastic indentation depth and normal contact stiffness versus load.” J Colloid Interface Sci, vol. 226, no. 1, pp. 166–171, Jun 2000.

    Article  Google Scholar 

  62. I. M. Nnebe, R. D. Tilton, and J. W. Schneider, “Direct force measurement of the stability of poly(ethylene glycol) polyethylenimine graft films,” Journal of Colloid and Interface Science, vol. 276, pp. 306–316, 2004.

    Article  Google Scholar 

  63. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. Prentice Hall, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cagdas D. Onal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Onal, C.D., Ozcan, O., Sitti, M. (2012). Automated Tip-Based 2-D Mechanical Assembly of Micro/Nanoparticles. In: Gorman, J., Shapiro, B. (eds) Feedback Control of MEMS to Atoms. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5832-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5832-7_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5831-0

  • Online ISBN: 978-1-4419-5832-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics