Skip to main content

Universal Donsker Classes and Metric Entropy

  • Chapter
  • First Online:

Part of the book series: Selected Works in Probability and Statistics ((SWPS))

Abstract

When \(\mathfrak{F}\) is a universal Donsker class, then for independent, indetically distributed (i.i.d) observation \(\mathbf{X}_1,\ldots,\mathbf{X}_n\) with an unknown law P, for any \(\mathfrak{f}_i\)in \(\mathfrak{F},\) \(i=1,\ldots,m,\quad n^{-1/2}\left\{ \mathfrak{f}_1\left(\mathbf{X}_1\right)+\ldots+\mathfrak{f}_i\left(\mathbf{X}_n\right)\right\}_{1\leq i\leq m}\) is asymptotically normal with mean Vector \(n^{1/2}\left\{\int\mathfrak{f}_i\left(\mathbf{X}_n\right)d\mathbf{P}\left(x\right)\right\}_{1_\leq i\leq m}\) and covariance matrix \(\int\mathfrak{f}_i\mathfrak{f}_j d\mathbf{P}-\int\mathfrak{f}_id\mathbf{P}\int\mathfrak{f}_jd\mathbf{P},\) uniformly for \({\mathfrak{f}_i}\in \mathfrak{F}.\) Then, for certain Statistics formed frome the \(\mathfrak{f}_i\left(\mathbf{X}_k\right),\) even where \(\mathfrak{f}_i\) may be chosen depending on the \(\mathbf{X}_k\) there will be asymptotic distribution as \(n \rightarrow \infty.\) For example, for \(\mathbf{X}^2\) statistics, where \(f_i\) are indicators of disjoint intervals, depending suitably on \(\mathbf{X}_1,\ldots,\mathbf{X}_n\), whose union is the real line, \(\mathbf{X}^2\) quadratic forms have limiting distributions [Roy (1956) and Watson (1958)] which may, however, not be \(\mathbf{X}^2\) distributions and may depend on P [Chernoff and Lehmann (1954)]. Universal Donsker classes of sets are, up to mild measurability conditions, just classes satisfying the Vapnik–Červonenkis comdinatorial conditions defined later in this section Donsker the Vapnik-Červonenkis combinatorial conditions defined later in this section [Durst and Dudley (1981) and Dudley (1984) Chapter 11]. The use of such classes allows a variety of extensions of the Roy–Watson results to general (multidimensional) sample spaces [Pollard (1979) and Moore and Subblebine (1981)]. Vapnik and Červonenkis (1974) indicated application of their families of sets to classification (pattern recognition) problems. More recently, the classes have been applied to tree-structured classifiacation [Breiman, Friedman, Olshen and Stone (1984), Chapter 12].

Received August 1985; revised August 1986.

This research was partially supported by National Science Foundation Grant DMS-8506638.

AMS 1980 subject claasifications. Primary 60F17, 60F05; secondary 60G17, 60G20.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, K. S. (1984). Probability inequalities for empirical processes and a law of the iterated logarithm. Ann. Probab. 12 1041–1067.

    Article  MATH  MathSciNet  Google Scholar 

  • Alexander, K. S. (1985a). The central limit theorem for weighted empirical processes indexed by sets. J. Multivariate Anal. To appear.

    Google Scholar 

  • Alexander, K. S. (1985b). Rates of growth for weighted empirical processes. In Proc. of the Conference Berkeley in Honor of Jerzy Neyman and Jack Kiefer (L. M. Le Cam and R. A. Olshen, eds.) 2 475–493. Wadsworth, Monterey, Calif.

    Google Scholar 

  • Alexander, K. S. (1987). The central limit theorem for empirical processes on Vapnik–Červonenkis classes. Ann. Probab. 15 178–203.

    Article  MATH  MathSciNet  Google Scholar 

  • Assouad, P. (1983). Densité et dimension. Ann. Inst. Fourier (Grenoble) 33 (3) 233–282.

    MATH  MathSciNet  Google Scholar 

  • Beck, J. (1985). Lower bounds on the approximation of the multivariate empirical process. Z. Wahrsch. verw. Gebiete 70 289–306.

    Article  MATH  MathSciNet  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and Regression Trees. Wadsworth, Belmont, Calif.

    MATH  Google Scholar 

  • Carl, B. (1982). On a characterization of operators from l q into a Banach space of type p with some applications to eigenvalue problems. J. Funct. Anal. 48 394–407.

    Article  MATH  MathSciNet  Google Scholar 

  • Chernoff, H. and Lehmann, E. L. (1954). The use of maximum likelihood estimates in χ2 tests for goodness of fit. Ann. Math. Statist. 25 579–586.

    Article  MATH  MathSciNet  Google Scholar 

  • Csörgő, M., Csörgő, S., and Horváth, L. (1986). An Asymptotic Theory for Empirical Reliability and Concentration Processes. Lecture Notes in Statist. 33. Springer, New York.

    Google Scholar 

  • Csörgő, M., Csörgő, S., Horváth, L. and Mason, D. (1986). Weighted empirical and quantile processes. Ann. Probab. 14 31–85.

    Article  MathSciNet  Google Scholar 

  • Dudley, R. M. (1967). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1 290–330.

    Article  MATH  MathSciNet  Google Scholar 

  • Dudley, R. M. (1973). Sample functions of the Gaussian process. Ann. Probab. 1 66–103.

    Article  MATH  MathSciNet  Google Scholar 

  • Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6 899–929. Correction. 7 (1979) 909–911.

    MathSciNet  Google Scholar 

  • Dudley, R. M. (1981). Donsker classes of functions. In Statistics and Related Topics (Proc. Symp. Ottowa, 1980) 341–352. North-Holland, Amsterdam.

    Google Scholar 

  • Dudley, R. M. (1984). A course on empirical processes. École d’Été de Probabilités de Saint Flour XII–1982. Lecture Notes in Math. 1097 1–142. Springer, New York.

    Google Scholar 

  • Dudley, R. M. (1985). An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions. Lecture Notes in Math. 1153 141–178. Springer, New York.

    Google Scholar 

  • Dunford, N. and Schwartz, J. T. (1958). Linear Operators, Part I: General Theory. Wiley, New York.

    Google Scholar 

  • Durst, M. and Dudley, R. M. (1981). Empirical processes, Vapnik–Červonenkis classes and Poisson processes. Probab. Math. Statist. 1 109–115.

    MathSciNet  Google Scholar 

  • Fernique, X. (1970). Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris Sér. A 270 1698–1699.

    MATH  MathSciNet  Google Scholar 

  • Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes. Ann. Probab. 12 929–989.

    Article  MATH  MathSciNet  Google Scholar 

  • Heinkel, B. (1983). Majorizing measures and limit theorems for c 0-valued random variables. In Probability in Banach Spaces IV (A. Beck and K. Jacobs, eds.). Lecture Notes in Math. 990 136–149. Springer, New York.

    Google Scholar 

  • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13–30.

    Article  MATH  MathSciNet  Google Scholar 

  • Hoffmann-Jørgensen, J. (1984). Personal communication.

    Google Scholar 

  • KolčinskiȜ, V. I. (1981). On the central limit theorem for empirical measures. Theory Probab. Math. Statist. 24 71–82.

    Google Scholar 

  • Le Cam, L., Mahan, C. and Singh, A. (1983). An extension of a theorem of H. Chernoff and E. L. Lehmann. In Recent Advances in Statistics: Papers in Honor of Herman Chernoff (M. H. Rizvi, J. S. Rustagi and D. Siegmund, eds.) 303–337. Academic, New York.

    Google Scholar 

  • Moore, D. S. and Stubblebine, J. B. (1981). Chi-square tests for multivariate normality with application to common stock prices. Comm. Statist. A—Theory Methods 10 713–738.

    Article  MathSciNet  Google Scholar 

  • Paulauskas, V. (1980). On the central limit theorem in the Banach space c 0. Dokl. Akad. Nauk SSSR 254 286–288.

    MathSciNet  Google Scholar 

  • Pisier, G. (1981). Remarques sur un résultat non publié de B. Maurey. Séminaire d’Analyse Fonctionelle 1980–1981 V.1–V.12. Ecole Polytechnique, Centre de Mathématiques, Palaiseau.

    Google Scholar 

  • Pollard, D. (1979). General chi-square goodness-of-fit tests with data-dependent cells. Z. Wahrsch. verw. Gebiete 50 317–331.

    Article  MATH  MathSciNet  Google Scholar 

  • Pollard, D. (1982). A central limit theorem for empirical processes. J. Austral. Math. Soc. Ser. A 33 235–248.

    Article  MATH  MathSciNet  Google Scholar 

  • Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

    MATH  Google Scholar 

  • Pollard, D. (1985). New ways to prove central limit theorems. Preprint.

    Google Scholar 

  • Roy, A. R. (1956). On χ2 statistics with variable intervals. Technical Report 1, Dept. of Statistics, Stanford Univ.

    Google Scholar 

  • Talagrand, M. (1987). The Glivenko-Cantelli problem. Ann. Probab. 15 837–870.

    Article  MATH  MathSciNet  Google Scholar 

  • Vapnik, V. N. and Červonenkis, A. Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16 264–280.

    Article  MATH  Google Scholar 

  • Vapnik, V. N. and Červonenkis, A. Ya. (1974). Teoriya Raspoznavaniya Obrazov: Statisticheskie Problemy Obucheniya (Theory of Pattern Recognition: Statistical Problems of Learning). (In Russian.) Nauka, Moscow. German ed.: Theorie der Zeichenerkennung, by W. N. Wapnik and A. J. Tscherwonenkis, translated by K. G. Stöckel and B. Schneider (S. Unger and K. Fritzsch, eds.). Akademie-Verlag, Berlin, 1979 (Elektronisches Rechnen und Regeln, Sonderband 28).

    Google Scholar 

  • Watson, G. S. (1958). On chi-square goodness-of-fit tests for continuous distributions. J. Roy. Statist. Soc. Ser. B 20 44–61.

    MATH  MathSciNet  Google Scholar 

  • Wenocur, R. S. and Dudley, R. M. (1981). Some special Vapnik-Červonenkis classes. Discrete Math. 33 313–318.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dudley, R.M. (2010). Universal Donsker Classes and Metric Entropy. In: Giné, E., Koltchinskii, V., Norvaisa, R. (eds) Selected Works of R.M. Dudley. Selected Works in Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5821-1_19

Download citation

Publish with us

Policies and ethics