Skip to main content

Empirical and Poisson Processes on Classes of Sets or Functions Too Large for Central Limit Theorems

  • Chapter
  • First Online:
  • 1814 Accesses

Part of the book series: Selected Works in Probability and Statistics ((SWPS))

Summary

Let P be the uniform probability law on the unit cube I d in d dimensions, and P n the corresponding empirical measure. For various classes С of sets AI d, upper and lower bounds are found for the probable size of sup {|P n P)(A)|: A ∈ С}. If С is the collection of lower layers in I 2, or of convex sets in I 3, an asymptotic lower bound is

$$\left( {{{\left( {\log n} \right)} \mathord{\left/ {\vphantom {{\left( {\log n} \right)} n}} \right.} n}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)\left( {\log \log n} \right)^{ - \delta - {1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}} \quad {\rm{for}}\,{\rm{any}}\,\delta > 0.$$

Thus the law of the iterated logarithm fails for these classes. If α > 0, β is the greatest integer <α, and 0 < K < ∞, let С be the class of all sets \(\{ x_d \underline \le \,f\,(x_1,\, \ldots,\,x_{d - 1} )\} \) where f has all its partial derivatives of orders \(\underline \le \,\beta \) bounded by K and those of order β satisfy a uniform Hölder condition \(|D^p (f(x)\, - \,f(y))|\,|\underline \le K|x\, - \,y|^{\alpha - \beta } \). For 0 < α < d − 1 one gets a universal lower bound δn α/(d − 1 + α), for a constant δ = δ(d, α) > 0. When α = d − 1 the same lower bound is obtained as for the lower layers in I 2 or convex sets in I 3. For \(0 < \,\alpha \,\underline \le \,d\, - \,1\) there is also an upper bound equal to a power of log n times the lower bound, so the powers of n are sharp.

The research was partially supparted by National Science Foundation Grants MCS-79-04474

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakhvalov [Bahvalov], N.S.: On approximate calculation of multiple integrals (in Russian). Vestnik Mosk. Univ. Ser. Mat. Mekh. Astron. Fiz. Khim. 1959, no. 4, 3–18 (1959)

    Google Scholar 

  2. Bennett, G.: Probability inequalities for sums of independent random variables. J. Amer. Statist. Assoc. 57, 33–45 (1962)

    Article  MATH  Google Scholar 

  3. Csörgő, M., Révész, P.: Strong Approximations in Probability and Statistics. Akadémiai Kiadó, Budapest (1981)

    Google Scholar 

  4. Dudley, R.M.: Sample functions of the Gaussian process. Ann. Probab. 1, 66–103 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dudley, R.M.: Metric entropy of some classes of sets with differentiable boundaries. J. Approximation Theory 10, 227–236 (1974); Correction, ibid. 26, 192–193 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dudley, R.M.: Central limit theorems for empirical measures. Ann. Probab. 6, 899–929 (1978); Correction, ibid. 7, 909–911 (1979)

    MATH  MathSciNet  Google Scholar 

  7. Dudley, R.M.: Lower layers in ²2 and convex sets in ²3 are not GB classes. Lecture Notes in Math. no. 709, 97–102. Berlin-Heidelberg-New York: Springer 1979

    Google Scholar 

  8. Evstigneev, I.V.: “Markov times” for random fields. Theor. Probability Appls. 22, 563–569 = Teor. Verojatnost. i Primenen. 22, 575–581 (1977)

    MathSciNet  Google Scholar 

  9. Feller, W.: An Introduction to Probability Theory and its Applications, vol. I, 3d ed.; vol. II, 2d ed. New York: Wiley 1968 and 1971

    Google Scholar 

  10. Kac, M.: On deviations between theoretical and empirical distributions. Proc. Nat. Acad. Sci. USA 35, 252–257 (1949)

    Article  MATH  Google Scholar 

  11. Kaufman, R., Walter Philipp: A uniform law of the iterated logarithm for classes of functions. Ann. Probab. 6, 930–952 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaufman, Robert. Smooth functions and Gaussian processes. Approximation Theory III, ed. E.W. Cheney, p. 561–564. N.Y.: Academic Press 1980

    Google Scholar 

  13. Kolmogorov, A.N., Tikhomirov, V.M.: ε-entropy and ε-capacity of sets in functional spaces. Amer. Math. Soc. Transl. (Ser. 2) 17, 277–364 (1961) = Uspekhi Mat. Nauk. 14, vyp. 2(86), 3–86 (1959)

    Google Scholar 

  14. Kuelbs, J., Dudley, R.M.: Log log laws for empirical measures. Ann. Probab. 8, 405–418 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pyke, R.: The weak convergence of the empirical process with random sample size. Proc. Cambridge Philos. Soc. 64, 155–160 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rao, R. Ranga: Relations between weak and uniform convergence of measures with applications. Ann. Math. Statist. 33, 659–680 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  17. Révész, P.: On strong approximation of the multidimensional empirical process. Ann. Probab. 4, 729–743 (1976)

    Article  MATH  Google Scholar 

  18. Révész, P.: Three theorems of multivariate empirical process. Empirical Distributions and Processes, ed. P. Gaenssler and P. Révész. Lecture Notes in Math. 566, 106–126. Berlin-Heidel-berg-New York: Springer 1976

    Google Scholar 

  19. Roberts, A. W., Varberg, D.E.: Convex Functions. New York: Academic Press 1973

    MATH  Google Scholar 

  20. Schmidt, W.: Irregularities of distribution IX. Acta Arith. 27, 385–396 (1975)

    MATH  Google Scholar 

  21. Steele, J. Michael: Empirical discrepancies and subadditive processes. Ann. Probab. 6, 118–127 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stute, W.: Convergence rates for the isotrope discrepancy. Ann. Probab. 5, 707–723 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sudakov, V.N.: Gaussian and Cauchy measures and ε-entropy. Soviet Math. Doklady 10, 310–313 (1969)

    MATH  Google Scholar 

  24. Sun, Tze-Gong, Pyke, R.: Weak convergence of empirical processes. Technical Report, Dept. Statist. Univ. Washington, Seattle (1982)

    Google Scholar 

  25. Wright, F.T.: The empirical discrepancy over lower layers and a related law of large numbers. Ann. Probab. 9, 323–329 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dudley, R.M. (2010). Empirical and Poisson Processes on Classes of Sets or Functions Too Large for Central Limit Theorems. In: Giné, E., Koltchinskii, V., Norvaisa, R. (eds) Selected Works of R.M. Dudley. Selected Works in Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5821-1_17

Download citation

Publish with us

Policies and ethics