Stem Cell Origin of Brain Tumors

  • Dawn Waters
  • Ben Newman
  • Michael L. LevyEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 671)


The biology of both normal and tumor development clearly possesses overlapping and parallel features. Oncogenes and tumor suppressors are relevant not only in tumor biology, but also in physiological developmental regulators of growth and differentiation. Conversely, genes identified as regulators of developmental biology are relevant to tumor biology. This is particularly relevant in the context of brain tumors, where recent evidence is mounting that the origin of brain tumors, specifically gliomas, may represent dysfunctional developmental neurobiology. NSCs are increasingly being investigated as the cell type that originally undergoes malignant transformation—the cell of origin—and the evidence for this is discussed.


Epidermal Growth Factor Receptor Brain Tumor Glioma Cell Cancer Stem Cell Neural Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rather L. The Genesis of Cancer: A Study in the History of Ideas, Baltimore: Johns Hopkins University Press, 1978.Google Scholar
  2. 2.
    Bailey P, Cushing H. A classification of the tumors of the glioma group on a histogenetic basis with a correlated study of prognosis, Philadelphia, London: J.B. Lippincott Company, 1926.Google Scholar
  3. 3.
    Smyth G, Stern, K. Tumors of the thalamus: a clinicopathological study. Brain 1938; 61.Google Scholar
  4. 4.
    Globus JH, Kuhlenbeck H. The subependymal plate (matrix) and its relationship to brain tumors of the ependymal type. J Neuropathol Exp Neurol 1944;3:1–35.CrossRefGoogle Scholar
  5. 5.
    Lewis P. Mitotic activity in the primate subependymal layer and the genesis of gliomas. Nature 1968; 217:974–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Hopewell J, Wright E. The importance of implantation site in cerebral carcinogenesis in rats. Cancer Res 1969; 29:1927–31.PubMedGoogle Scholar
  7. 7.
    Copeland D, Vogel F, Bigner D. The induction of intractranial neoplasms by the inoculation of avian sarcoma virus in perinatal and adult rats. J Neuropathol Exp Neurol 1975; 34:340–58.CrossRefPubMedGoogle Scholar
  8. 8.
    Copeland D, Bigner D. The role of the subependymal plate in avian sarcoma virus brain tumor induction: comparison of incipient tumors in neonatal and adult rats. Acta Neuropathol (Berl) 1977; 38:1–6.CrossRefGoogle Scholar
  9. 9.
    Vick N, Lin M, Bigner D. The role of the subependymal plate in glial tumorigenesis. Acta Neuropathol (Berl) 1977; 40:63–71.CrossRefGoogle Scholar
  10. 10.
    Koestner A, Swenberg J, Wechsler W. Transplacental production with ethylnitrosourea of neoplasms of the nervous system in Sprague-Dawley rats. Am J Pathol 1971; 63:37–56.PubMedGoogle Scholar
  11. 11.
    Sanai N, Alvarez-Buylla A, Berger M. Neural stem cells and the origin of gliomas. N Engl J Med 2005; 353:811–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Curtis M, Kam M, Nannmark U et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 2007; 315:1243–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Mabon R, Svien H, Adson A et al. Astrocytomas of the cerebellum. Arch Neurol Psychiatry 1950; 64:74–88.PubMedGoogle Scholar
  14. 14.
    Doetsch F, Caillé I, Lim D et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97:703–16.CrossRefPubMedGoogle Scholar
  15. 15.
    Sakariassen P, Immervoll H, Chekenya M. Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia 2007; 9:882–92.CrossRefPubMedGoogle Scholar
  16. 16.
    Valtz N, Hayes T, Norregaard T et al. An embryonic origin for medulloblastoma. New Biol 1991; 3:364–71.PubMedGoogle Scholar
  17. 17.
    Chekenya M, Pilkington G. NG2 precursor cells in neoplasia: functional, histogenesis and therapeutic implications for malignant brain tumours. J Neurocytol 2002; 31:507–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Kraus J, Koopmann J, Kaskel P et al. Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma. J Neuropathol Exp Neurol 1995; 54:91–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Dahlstrand J, Collins V, Lendahl U. Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res 1992; 52:5334–41.PubMedGoogle Scholar
  20. 20.
    Tohyama T, Lee V, Rorke L et al. Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest 1992; 66:303–13.PubMedGoogle Scholar
  21. 21.
    Lendahl U, Zimmerman L, McKay R. CNS stem cells express a new class of intermediate filament protein. Cell 1990; 60:585–95.CrossRefPubMedGoogle Scholar
  22. 22.
    Shoshan Y, Nishiyama A, Chang A et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci USA 1999; 96:10361–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Doetsch F, Petreanu L, Caille I et al. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002; 36:1021–34.CrossRefPubMedGoogle Scholar
  24. 24.
    Palmer T, Willhoite A, Gage F. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000; 425:479–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Seri B, García-Verdugo J, Collado-Morente L et al. Cell types, lineage and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 2004; 478:359–78.CrossRefPubMedGoogle Scholar
  26. 26.
    Vescovi A, Galli R, Reynolds B. Brain tumour stem cells. Nat Rev Cancer 2006; 6:425–36.CrossRefPubMedGoogle Scholar
  27. 27.
    Huntly B, Gilliland D. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5:311–21.CrossRefPubMedGoogle Scholar
  28. 28.
    Clarke M, Dick J, Dirks et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66:9339–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Lee J, Herlyn M. Old disease, new culprit: tumor stem cells in cancer. J Cell Physiol 2007; 213:603–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Buzzeo M, Scott E, Cogle C. The hunt for cancer-initiating cells: a history stemming from leukemia. Leukemia 2007; 21:1619–27.CrossRefPubMedGoogle Scholar
  31. 31.
    Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367:645–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Al-Hajj M, Wicha M, Benito-Hernandez et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100:3983–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Ignatova T, Kukekov V, Laywell E et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002; 39:193–206.CrossRefPubMedGoogle Scholar
  34. 34.
    Singh S, Hawkins C, Clarke I et al. Identification of human brain tumour initiating cells. Nature 2004; 432:396–401.CrossRefPubMedGoogle Scholar
  35. 35.
    Taylor M, Poppleton H, Fuller C et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 2005; 8:323–35.CrossRefPubMedGoogle Scholar
  36. 36.
    Merkle F, Tramontin A, García-Verdugo J et al. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 2004; 101:17528–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Berger F, Gay E, Pelletier L et al. Development of gliomas: potential role of asymmetrical cell division of neural stem cells. Lancet Oncol 2004; 5:511–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Mellinghoff I, Wang M, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353:2012–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Joy A, Moffett J, Neary K et al. Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. Oncogene 1997; 14:171–83.CrossRefPubMedGoogle Scholar
  40. 40.
    Auguste P, Gürsel D, Lemière S et al. Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and-independent mechanisms. Cancer Res 2001; 61:1717–26.PubMedGoogle Scholar
  41. 41.
    Palmer T, Markakis E, Willhoite A et al. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 1999; 19:8487–97.PubMedGoogle Scholar
  42. 42.
    Gritti A, Parati E, Cova L et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 1996; 16:1091–100.PubMedGoogle Scholar
  43. 43.
    Vescovi A, Reynolds B, Fraser D et al. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 1993; 11:951–66.CrossRefPubMedGoogle Scholar
  44. 44.
    Hitoshi S, Alexson T, Tropepe V et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 2002; 16:846–58.CrossRefPubMedGoogle Scholar
  45. 45.
    Shen Q, Goderie S, Jin L et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 2004; 304:1338–40.CrossRefPubMedGoogle Scholar
  46. 46.
    Purow B, Haque R, Noel M et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 2005; 65:2353–63.CrossRefPubMedGoogle Scholar
  47. 47.
    Baker S, McKinnon P. Tumour-suppressor function in the nervous system. Nat Rev Cancer 2004; 4:184–96.CrossRefPubMedGoogle Scholar
  48. 48.
    Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434:843–50.CrossRefPubMedGoogle Scholar
  49. 49.
    Groszer M, Erickson R, Scripture-Adams D et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 2001; 294:2186–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Wechsler-Reya R, Scott M. The developmental biology of brain tumors. Annu Rev Neurosci 2001; 24:385–428.CrossRefPubMedGoogle Scholar
  51. 51.
    Rasheed B, Wiltshire R, Bigner S et al. Molecular pathogenesis of malignant gliomas. Curr Opin Oncol 1999; 11:162–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Chenn A, Walsh C. Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cereb Cortex 2003; 13:599–606.CrossRefPubMedGoogle Scholar
  53. 53.
    Lie D, Colamarino S, Song H et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005; 437:1370–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Roth W, Wild-Bode C, Platten M et al. Secreted Frizzled-related proteins inhibit motility and promote growth of human malignant glioma cells. Oncogene 2000; 19:4210–20.CrossRefPubMedGoogle Scholar
  55. 55.
    Bachoo R, Maher E, Ligon K et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1:269–77.CrossRefPubMedGoogle Scholar
  56. 56.
    Dai C, Celestino J, Okada Y et al. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 2001; 15:1913–25.CrossRefPubMedGoogle Scholar
  57. 57.
    Uhrbom L, Dai C, Celestino J et al. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res 2002; 62:5551–8.PubMedGoogle Scholar
  58. 58.
    Ding H, Roncari L, Shannon P et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 2001; 61:3826–36.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  1. 1.Division of NeurosurgeryUCSD Medical CenterSan DiegoUSA
  2. 2.Pediatric NeurosurgeryRady Children’s HospitalSan DiegoUSA

Personalised recommendations