Animal Models of Neurological Disease

  • Amol Shah
  • Tomas Garzon-Muvdi
  • Rohit Mahajan
  • Vincent J. Duenas
  • Alfredo Quiñones-HinojosaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 671)


The use of animal models to study human pathology has proved valuable in a number of fields. Animal models of neurological disease have successfully and accurately recreated many aspects of human illness allowing for in-depth study of neuropathophysiology. These models have been the source of a plethora of information, such as the importance of certain molecular mechanisms and genetic contributions in neurological disease. Additionally, animal models have been utilized in the discovery and testing of possible therapeutic treatments. Although most neurological diseases are still not yet completely understood and reliable treatment is lacking, animal models provide a major step in the right direction.


Transgenic Mouse Cerebral Ischemia Middle Cerebral Artery Occlusion Amyloid Precursor Protein Global Cerebral Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmid A, DiDonato C. Animal models of spinal muscular atrophy. J Child Neurol 2007; 22(8):1004–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Cenci M, Whishaw I, Schallert T. Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 2002; 3(7):574–9.PubMedCrossRefGoogle Scholar
  3. 3.
    DeLong M. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13(7):281–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Betarbet R, Sherer T, Greenamyre J. Animal models of Parkinson’s disease. Bioessays 2002; 24(4):308–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Beal MF. Experimental models of Parkinson’s disease. Nat Rev Neurosci 2001; 2(5):325–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 1957; 180(4596):1200.PubMedCrossRefGoogle Scholar
  7. 7.
    Hornykiewicz O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 1966; 18(2):925–64.PubMedGoogle Scholar
  8. 8.
    McMillen B. CNS stimulants: two distinct mechanisms of action for amphetamine-like drugs. TIPS 1983(4):429–32.Google Scholar
  9. 9.
    Fibiger HC, Mogeer EG. Effect of acute and chronic methamphetamine treatment on tyrosine hydroxylase activity in brain and adrenal medulla. Eur J Pharmacol 1971; 16(2):176–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Schwarting RK, Huston JP. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 1996; 50(2–3):275–331.PubMedCrossRefGoogle Scholar
  11. 11.
    Annett LE, Rogers DC, Hernandez TD et al. Behavioural analysis of unilateral monoamine depletion in the marmoset. Brain 1992; 115(Pt 3):825–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Ungerstedt U. 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway: the turning syndrome. Pharmacol Ther B 1976; 2(1):37–40.PubMedGoogle Scholar
  13. 13.
    Hattori N, Sato S. Animal models of Parkinson’s disease: similarities and differences between the disease and models. Neuropathology 2007; 27(5):479–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Tipton KF, Singer TP. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 1993; 61(4):1191–206.PubMedCrossRefGoogle Scholar
  15. 15.
    Chan P, DeLanney LE, Irwin I et al. Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J Neurochem 1991; 57(1):348–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Bloem BR, Irwin I, Buruma OJ et al. The MPTP model: versatile contributions to the treatment of idiopathic Parkinson’s disease. J Neurol Sci 1990; 97(2–3):273–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Burns RS, Chiueh CC, Markey SP et al. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 1983; 80(14):4546–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Beal M, Hantraye P. Novel therapies in the search for a cure for Huntington’s disease. Proc Natl Acad Sci USA 2001; 98(1):3–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Wichmann T, Bergman H, Starr PA et al. Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp Brain Res 1999; 125(4):397–409.PubMedCrossRefGoogle Scholar
  20. 20.
    Wichmann T, Kliem MA, DeLong MR. Antiparkinsonian and behavioral effects of inactivation of the substantia nigra pars reticulata in hemiparkinsonian primates. Exp Neurol 2001; 167(2):410–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Bergman H, Wichmann T, Karmon B et al. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 1994; 72(2):507–20.PubMedGoogle Scholar
  22. 22.
    Filion M, Tremblay L, Bedard PJ. Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 1991; 547(1):152–61.PubMedGoogle Scholar
  23. 23.
    Bronstein J, DeSalles A, DeLong M. Stereotactic pallidotomy in the treatment of Parkinson disease: an expert opinion. Arch Neurol 1999; 56(9):1064–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Beal M, Matthews R, Tieleman A et al. Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3, tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res 1998; 783(1):109–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Forno L, Langston J, DeLanney L et al. An electron microscopic study of MPTP-induced inclusion bodies in an old monkey. Brain Res 1988; 448(1):150–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Gorell J, Johnson C, Rybicki B et al. The risk of Parkinson’s disease with exposure to pesticides, farming, well water and rural living. Neurology 1998; 50(5):1346–50.PubMedGoogle Scholar
  27. 27.
    Seidler A, Hellenbrand W, Robra B et al. Possible environmental, occupational and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology 1996; 46(5):1275–84.PubMedGoogle Scholar
  28. 28.
    Hattori N, Sato S. Animal models of Parkinson’s disease: similarities and differences between the disease and models. Neuropathology 2007; 27(5):479–83.PubMedCrossRefGoogle Scholar
  29. 29.
    Polymeropoulos M. Genetics of Parkinson’s disease. Ann N Y Acad Sci 2000; 920:28–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Krüger R, Kuhn W, Müller T et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998; 18(2):106–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Lücking C, Abbas N, Dürr A et al. Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. The European Consortium on Genetic Susceptibility in Parkinson’s disease and the French Parkinson’s disease Genetics Study Group. Lancet 1998; 352(9137):1355–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Shimura H, Hattori N, Kubo S et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25(3):302–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Masliah E, Rockenstein E, Veinbergs I et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000; 287(5456):1265–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature 2000; 404(6776):394–8.PubMedCrossRefGoogle Scholar
  35. 35.
    van der Putten H, Wiederhold KH, Probst A et al. Neuropathology in mice expressing human alpha-synuclein. J Neurosci 2000; 20(16):6021–9.PubMedGoogle Scholar
  36. 36.
    Feany M, Bender W. A Drosophila model of Parkinson’s disease. Nature 2000; 404(6776):394–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Traystman R. Animal models of focal and global cerebral ischemia. ILAR J 2003; 44(2):85–95.PubMedGoogle Scholar
  38. 38.
    Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 2007; 87(1):179–97.PubMedCrossRefGoogle Scholar
  39. 39.
    Garcia J. Experimental ischemic stroke: a review. Stroke 1984; 15(1):5–14.PubMedGoogle Scholar
  40. 40.
    Hossmann K. Experimental models for the investigation of brain ischemia. Cardiovasc Res 1998; 39(1):106–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Purdy PD, Devous MD Sr, Batjer HH et al. Microfibrillar collagen model of canine cerebral infarction. Stroke 1989; 20(10):1361–7.PubMedGoogle Scholar
  42. 42.
    Lauer KK, Shen H, Stein EA et al. Focal cerebral ischemia in rats produced by intracarotid embolization with viscous silicone. Neurol Res 2002; 24(2):181–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Dietrich W, Watson B, Busto R et al. Photochemically induced cerebral infarction. I. Early microvascular alterations. Acta Neuropathol 1987; 72(4):315–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Abe K, Yoshida S, Watson B et al. Alpha-tocopherol and ubiquinones in rat brain subjected to decapitation ischemia. Brain Res 1983; 273(1):166–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Ikeda M, Yoshida S, Busto R et al. Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia. J Neurochem 1986; 47(1):123–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Yoshida S, Busto R, Watson B et al. Postischemic cerebral lipid peroxidation in vitro: modification by dietary vitamin E. J Neurochem 1985; 44(5):1593–601.PubMedCrossRefGoogle Scholar
  47. 47.
    Siemkowicz E, Gjedde A. Post-ischemic coma in rat: effect of different preischemic blood glucose levels on cerebral metabolic recovery after ischemia. Acta Physiol Scand 1980; 110(3):225–32.PubMedCrossRefGoogle Scholar
  48. 48.
    Kabat H, Dennis C, AB B. Recovery of function following arrest of the brain circulation. Am J Physiol 1941(132):737–47.Google Scholar
  49. 49.
    Grenell R. Central nervous system resistance: I. The effects of temporary arrest of cerebral circulation for periods of two to ten minutes. J Neuropathol Exp Neurol 1946; 5:131–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J 2003; 44(2):85–95.PubMedGoogle Scholar
  51. 51.
    Scheller M, Grafe M, Zornow M et al. Effects of ischemia duration on neurological outcome, CA1 histopathology and nonmatching to sample learning in monkeys. Stroke 1992; 23(10):1471–6; discussion 7–8.PubMedGoogle Scholar
  52. 52.
    Berkowitz ID, Gervais H, Schleien CL et al. Epinephrine dosage effects on cerebral and myocardial blood flow in an infant swine model of cardiopulmonary resuscitation. Anesthesiology 1991; 75(6):1041–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Dean JM, Koehler RC, Schleien CL et al. Age-related changes in chest geometry during cardiopulmonary resuscitation. J Appl Physiol 1987; 62(6):2212–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Michael JR, Guerci AD, Koehler RC et al. Mechanisms by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Circulation 1984; 69(4):822–35.PubMedGoogle Scholar
  55. 55.
    Kofler J, Hattori K, Sawada M et al. Histopathological and behavioral characterization of a novel model of cardiac arrest and cardiopulmonary resuscitation in mice. J Neurosci Methods 2004; 136(1):33–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Kofler J, Otsuka T, Zhang Z et al. Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia. J Cereb Blood Flow Metab 2006; 26(1):135–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Pulsinelli W, Brierley J. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 1979; 10(3):267–72.PubMedGoogle Scholar
  58. 58.
    Pulsinelli W, Levy D, Duffy T. Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 1982; 11(5):499–502.PubMedCrossRefGoogle Scholar
  59. 59.
    Smith M, Bendek G, Dahlgren N et al. Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand 1984; 69(6):385–401.PubMedCrossRefGoogle Scholar
  60. 60.
    Levine S, Sohn D. Cerebral ischemia in infant and adult gerbils. Relation to incomplete circle of Willis. Arch Pathol 1969; 87(3):315–7.PubMedGoogle Scholar
  61. 61.
    Crockard A, Iannotti F, Hunstock A et al. Cerebral blood flow and edema following carotid occlusion in the gerbil. Stroke 1980; 11(5):494–8.PubMedGoogle Scholar
  62. 62.
    Osburne R, Halsey JJ. Cerebral blood flow. A predictor of recovery from ischemia in the gerbil. Arch Neurol 1975; 32(7):457–61.PubMedGoogle Scholar
  63. 63.
    Rubinsztein DC. Lessons from animal models of Huntington’s disease. Trends Genet 2002; 18(4):202–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Walker FO. Huntington’s disease. Lancet 2007; 369(9557):218–28.PubMedCrossRefGoogle Scholar
  65. 65.
    Duyao MP, Auerbach AB, Ryan A et al. Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 1995; 269(5222):407–10.PubMedCrossRefGoogle Scholar
  66. 66.
    Nasir J, Floresco SB, O’Kusky JR et al. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 1995; 81(5):811–23.PubMedCrossRefGoogle Scholar
  67. 67.
    Zeitlin S, Liu JP, Chapman DL et al. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 1995; 11(2):155–63.PubMedCrossRefGoogle Scholar
  68. 68.
    Walling HW, Baldassare JJ, Westfall TC. Molecular aspects of Huntington’s disease. J Neurosci Res 1998; 54(3):301–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Rubinsztein D. Lessons from animal models of Huntington’s disease. Trends Genet 2002; 18(4):202–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Rigamonti D, Bauer J, De-Fraja C et al. Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci 2000; 20(10):3705–13.PubMedGoogle Scholar
  71. 71.
    Rigamonti D, Sipione S, Goffredo D et al. Huntingtin’s neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 2001; 276(18):14545–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Ho L, Brown R, Maxwell M et al. Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington’s disease. J Med Genet 2001; 38(7):450–2.PubMedCrossRefGoogle Scholar
  73. 73.
    Davies SW, Turmaine M, Cozens BA et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90(3):537–48.PubMedCrossRefGoogle Scholar
  74. 74.
    Davies S, Turmaine M, Cozens B et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90(3):537–48.PubMedCrossRefGoogle Scholar
  75. 75.
    Becher M, Kotzuk J, Sharp A et al. Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 1998; 4(6):387–97.PubMedCrossRefGoogle Scholar
  76. 76.
    Wheeler V, White J, Gutekunst C et al. Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 2000; 9(4):503–13.PubMedCrossRefGoogle Scholar
  77. 77.
    Price DL, Sisodia SS, Borchelt DR. Genetic neurodegenerative diseases: the human illness and transgenic models. Science 1998; 282(5391):1079–83.PubMedCrossRefGoogle Scholar
  78. 78.
    Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 2000; 101(1):57–66.PubMedCrossRefGoogle Scholar
  79. 79.
    Kazemi-Esfarjani P, Benzer S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 2000; 287(5459):1837–40.PubMedCrossRefGoogle Scholar
  80. 80.
    Fernandez-Funez P, Nino-Rosales M, de Gouyon B et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 2000; 408(6808):101–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Marsh J, Walker H, Theisen H et al. Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet 2000; 9(1):13–25.PubMedCrossRefGoogle Scholar
  82. 82.
    Warrick J, Chan H, Gray-Board G et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 1999; 23(4):425–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Parker JA, Connolly JB, Wellington C et al. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci USA 2001; 98(23):13318–23.PubMedCrossRefGoogle Scholar
  84. 84.
    McKhann G, Drachman D, Folstein M et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984; 34(7):939–44.PubMedGoogle Scholar
  85. 85.
    Morrison J, Hof P. Life and death of neurons in the aging brain. Science 1997; 278(5337):412–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Wong PC, Cai H, Borchelt DR et al. Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci 2002; 5(7):633–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Feany M, Dickson D. Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Ann Neurol 1996; 40(2):139–48.PubMedCrossRefGoogle Scholar
  88. 88.
    Lee V, Balin B, Otvos LJ et al. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 1991; 251(4994):675–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Grundke-Iqbal I, Iqbal K, Quinlan M et al. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 1986; 261(13):6084–9.PubMedGoogle Scholar
  90. 90.
    Goedert M, Spillantini M, Cairns N et al. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 1992; 8(1):159–68.PubMedCrossRefGoogle Scholar
  91. 91.
    Goedert M, Jakes R, Spillantini M et al. Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 1996; 383(6600):550–3.PubMedCrossRefGoogle Scholar
  92. 92.
    Delacourte A, Sergeant N, Wattez A et al. Vulnerable neuronal subsets in Alzheimer’s and Pick’s disease are distinguished by their tau isoform distribution and phosphorylation. Ann Neurol 1998; 43(2):193–204.PubMedCrossRefGoogle Scholar
  93. 93.
    Dickson D. Neurodegenerative diseases with cytoskeletal pathology: a biochemical classification. Ann Neurol 1997; 42(4):541–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Götz J, Streffer J, David D et al. Transgenic animal models of Alzheimer’s disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 2004; 9(7):664–83.PubMedGoogle Scholar
  95. 95.
    Glenner G, Wong C. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3):885–90.PubMedCrossRefGoogle Scholar
  96. 96.
    Masters C, Simms G, Weinman N et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985; 82(12):4245–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Mann D, Iwatsubo T, Cairns N et al. Amyloid beta protein (Abeta) deposition in chromosome 14-linked Alzheimer’s disease: predominance of Abeta42(43). Ann Neurol 1996; 40(2):149–56.PubMedCrossRefGoogle Scholar
  98. 98.
    Mann D, Iwatsubo T, Nochlin D et al. Amyloid (Abeta) deposition in chromosome 1-linked Alzheimer’s disease: the Volga German families. Ann Neurol 1997(1):52–7.CrossRefGoogle Scholar
  99. 99.
    Lansbury PJ. Structural neurology: are seeds at the root of neuronal degeneration? Neuron 1997; 19(6):1151–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Jarrett J, Lansbury PJ. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 1993; 73(6):1055–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Mattson M. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997; 77(4):1081–132.PubMedGoogle Scholar
  102. 102.
    Yankner B. Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 1996; 16(5):921–32.PubMedCrossRefGoogle Scholar
  103. 103.
    Price DL, Sisodia SS. Mutant genes in familial Alzheimer’s disease and transgenic models. Annu Rev Neurosci 1998; 21:479–505.PubMedCrossRefGoogle Scholar
  104. 104.
    Rockenstein E, McConlogue L, Tan H et al. Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 1995; 270(47):28257–67.PubMedCrossRefGoogle Scholar
  105. 105.
    Games D, Adams D, Alessandrini R et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 1995; 373(6514):523–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Chen G, Chen K, Knox J et al. A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 2000; 408(6815):975–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Andra K, Abramowski D, Duke M et al. Expression of APP in transgenic mice: a comparison of neuron-specific promoters. Neurobiol Aging 1996; 17(2):183–90.PubMedCrossRefGoogle Scholar
  108. 108.
    Borchelt D, Ratovitski T, van Lare J et al. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 1997; 19(4):939–45.PubMedCrossRefGoogle Scholar
  109. 109.
    Hsiao K, Chapman P, Nilsen S et al. Correlative memory deficits, Abeta elevation and amyloid plaques in transgenic mice. Science 1996; 274(5284):99–102.PubMedCrossRefGoogle Scholar
  110. 110.
    Rockenstein E, Crews L, Masliah E. Transgenic animal models of neurodegenerative diseases and their application to treatment development. Adv Drug Deliv Rev 2007; 59(11):1093–102.PubMedCrossRefGoogle Scholar
  111. 111.
    Borchelt D, Thinakaran G, Eckman C et al. Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 1996; 17(5):1005–13.PubMedCrossRefGoogle Scholar
  112. 112.
    Boncristiano S, Calhoun M, Kelly P et al. Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis. J Neurosci 2002; 22(8):3234–43.PubMedGoogle Scholar
  113. 113.
    Takeuchi A, Irizarry M, Duff K et al. Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am J Pathol 2000; 157(1):331–9.PubMedGoogle Scholar
  114. 114.
    Irizarry M, McNamara M, Fedorchak K et al. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 1997; 56(9):965–73.PubMedCrossRefGoogle Scholar
  115. 115.
    Irizarry M, Soriano F, McNamara M et al. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 1997; 17(18):7053–9.PubMedGoogle Scholar
  116. 116.
    Calhoun M, Wiederhold K, Abramowski D et al. Neuron loss in APP transgenic mice. Nature 1998; 395(6704):755–6.PubMedCrossRefGoogle Scholar
  117. 117.
    Andrä K, Abramowski D, Duke M et al. Expression of APP in transgenic mice: a comparison of neuron-specific promoters. Neurobiol Aging 1996; 17(2):183–90.PubMedCrossRefGoogle Scholar
  118. 118.
    Mucke L, Masliah E, Yu G et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 2000; 20(11):4050–8.PubMedGoogle Scholar
  119. 119.
    Gotz J, Probst A, Spillantini MG et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J 1995; 14(7):1304–13.PubMedGoogle Scholar
  120. 120.
    Ishihara T, Zhang B, Higuchi M et al. Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am J Pathol 2001; 158(2):555–62.PubMedGoogle Scholar
  121. 121.
    Lewis J, Dickson D, Lin W et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 2001; 293(5534):1487–91.PubMedCrossRefGoogle Scholar
  122. 122.
    Lewis J, McGowan E, Rockwood J et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 2000; 25(4):402–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Götz J, Chen F, Barmettler R et al. Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 2001; 276(1):529–34.PubMedCrossRefGoogle Scholar
  124. 124.
    Götz J, Tolnay M, Barmettler R et al. Oligodendroglial tau filament formation in transgenic mice expressing G272V tau. Eur J Neurosci 2001; 13(11):2131–40.PubMedCrossRefGoogle Scholar
  125. 125.
    Tanemura K, Akagi T, Murayama M et al. Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol Dis 2001; 8(6):1036–45.PubMedCrossRefGoogle Scholar
  126. 126.
    Tatebayashi Y, Miyasaka T, Chui D et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 2002; 99(21):13896–901.PubMedCrossRefGoogle Scholar
  127. 127.
    Allen B, Ingram E, Takao M et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 2002; 22(21):9340–51.PubMedGoogle Scholar
  128. 128.
    Higuchi M, Ishihara T, Zhang B et al. Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron 2002; 35(3):433–46.PubMedCrossRefGoogle Scholar
  129. 129.
    Oddo S, Caccamo A, Kitazawa M et al. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 2003; 24(8):1063–70.PubMedCrossRefGoogle Scholar
  130. 130.
    Boutajangout A, Authelet M, Blanchard V et al. Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer’s disease mutants of APP and presenilin-1. Neurobiol Dis 2004; 15(1):47–60.PubMedCrossRefGoogle Scholar
  131. 131.
    Lu P, Wulf G, Zhou X et al. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 1999; 399(6738):784–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Lu K, Liou Y, Vincent I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer’s disease. Bioessays 2003; 25(2):174–81.PubMedCrossRefGoogle Scholar
  133. 133.
    Liou Y, Sun A, Ryo A et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 2003; 424(6948):556–61.PubMedCrossRefGoogle Scholar
  134. 134.
    Ishihara T, Hong M, Zhang B et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 1999; 24(3):751–62.PubMedCrossRefGoogle Scholar
  135. 135.
    Spittaels K, Van den Haute C, Van Dorpe J et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 1999; 155(6):2153–65.PubMedGoogle Scholar
  136. 136.
    Probst A, Götz J, Wiederhold K et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol 2000; 99(5):469–81.PubMedCrossRefGoogle Scholar
  137. 137.
    Wong PC, Cai H, Borchelt DR et al. Genetically engineered models relevant to neurodegenerative disorders: their value for understanding disease mechanisms and designing/testing experimental therapeutics. J Mol Neurosci 2001; 17(2):233–57.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Amol Shah
    • 1
  • Tomas Garzon-Muvdi
    • 2
  • Rohit Mahajan
    • 3
  • Vincent J. Duenas
    • 4
  • Alfredo Quiñones-Hinojosa
    • 5
    Email author
  1. 1.UCSD School of MedicineSan DiegoUSA
  2. 2.Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.College of MedicineUniversity of ToledoToledoUSA
  4. 4.Del E. Webb Neuroscience, Agingand Stem Cell Research CenterBurnham Institute for Regenerative MedicineLa JollaUSA
  5. 5.Department of NeurosurgeryNeuroscience and Cellular and Molecular Medicine, Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations