Skip to main content

Culture and Manipulation of Neural Stem Cells

  • Chapter
Frontiers in Brain Repair

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 671))

Abstract

Despite advances in the treatment of cancer, the prognosis of patient diagnosed with metastatis cancer to the brain remains poor. The role of neural stem cells as a viable tool in the treatment of metastatic cancer to the brain alone or in conjuction with current therapeutic modalities is promising. Both murine and human neural stem cells (NSCs) have been shown to migrate through the central nervous system (CNS) and infiltrate tumors and other pathological disease states of the brain. Genetic modification of NSCs to produce cytotoxic or immunomodulatory agents in the vicinity of a primary tumor and/or satellite lesion or has proven instrumental to the reduction of tumor bulk in murine models. Although the use of stem cells proves to be a volatile social topic, scientists have discovered that NSCs are present in the adult brain and continue to propagate and differentiate. These cells may be isolated and cultured to produce clonal NSC lines that are capable of self renewal and differentiation when introduced into the CNS. In this chapter, we describe protocols currently used in our lab for the successful maintenance of NSCs in vitro advancing the role of neural stem cells in the treatment of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunn I, Black P. The neurosurgeon as local oncologist: cellular and molecular neurosurgery in malignant glioma therapy. Neurosurgery 2003; 52(6):1411–22; discussion 22–4.

    Article  PubMed  Google Scholar 

  2. Chang E, Lo S. Diagnosis and management of central nervous system metastases from breast cancer. Oncologist 2003; 8(5):398–410.

    Article  PubMed  Google Scholar 

  3. Aboody K, Brown A, Rainov N et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97(23):12846–51.

    Article  CAS  PubMed  Google Scholar 

  4. Park K, Ourednik J, Ourednik V et al. Global gene and cell replacement strategies via stem cells. Gene Ther 2002; 9(10):613–24.

    Article  CAS  PubMed  Google Scholar 

  5. Flax J, Aurora S, Yang C et al. Engraftable human neural stem cells respond to developmental cues, replace neurons and express foreign genes. Nat Biotechnol 1998; 16(11):1033–9.

    Article  CAS  PubMed  Google Scholar 

  6. Palmer T, Takahashi J, Gage F. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 1997; 8(6):389–404.

    Article  CAS  PubMed  Google Scholar 

  7. Gage F. Mammalian neural stem cells. Science 2000; 287(5457):1433–8.

    Article  CAS  PubMed  Google Scholar 

  8. McKay R. Stem cells in the central nervous system. Science 1997; 276(5309):66–71.

    Article  CAS  PubMed  Google Scholar 

  9. Park K, Liu S, Flax J et al. Transplantation of neural progenitor and stem cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction. J Neurotrauma 1999; 16(8):675–87.

    Article  CAS  PubMed  Google Scholar 

  10. Snyder E, Yoon C, Flax J et al. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci USA 1997; 94(21):11663–8.

    Article  CAS  PubMed  Google Scholar 

  11. Yandava B, Billinghurst L, Snyder E. “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci USA 1999; 96(12):7029–34.

    Article  CAS  PubMed  Google Scholar 

  12. Ourednik J, Ourednik V, Lynch W et al. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol 2002; 20(11):1103–10.

    Article  CAS  PubMed  Google Scholar 

  13. Park K, Teng Y, Snyder E. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 2002; 20(11):1111–7.

    Article  CAS  PubMed  Google Scholar 

  14. Snyder E, Taylor R, Wolfe J. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 1995; 374(6520):367–70.

    Article  CAS  PubMed  Google Scholar 

  15. Sanai N, Tramontin A, Quiñones-Hinojosa A et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004; 427(6976):740–4.

    Article  CAS  PubMed  Google Scholar 

  16. Eriksson P, Perfilieva E, Björk-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11):1313–7.

    Article  CAS  PubMed  Google Scholar 

  17. Alvarez-Buylla A, Lim D. For the long run: maintaining germinal niches in the adult brain. Neuron 2004; 41(5):683–6.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia A, Doan N, Imura T et al. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 2004; 7(11):1233–41.

    Article  CAS  PubMed  Google Scholar 

  19. Doetsch F, Caillé I, Lim D et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97(6):703–16.

    Article  CAS  PubMed  Google Scholar 

  20. Palmer T, Schwartz P, Taupin P et al. Cell culture. Progenitor cells from human brain after death. Nature 2001; 411(6833):42–3.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz P, Bryant P, Fuja T et al. Isolation and characterization of neural progenitor cells from postmortem human cortex. J Neurosci Res 2003; 74(6):838–51.

    Article  CAS  PubMed  Google Scholar 

  22. Kim S, Cargioli T, Machluf M et al. PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin Cancer Res 2005; 11(16):5965–70.

    Article  CAS  PubMed  Google Scholar 

  23. Ehtesham M, Kabos P, Gutierrez M et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2002; 62(24):7170–4.

    CAS  PubMed  Google Scholar 

  24. Ehtesham M, Kabos P, Kabosova A et al. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 2002; 62(20):5657–63.

    CAS  PubMed  Google Scholar 

  25. Ourednik V, Ourednik J, Park K et al. Neural stem cells—a versatile tool for cell replacement and gene therapy in the central nervous system. Clin Genet 1999; 56(4):267–78.

    Article  CAS  PubMed  Google Scholar 

  26. Vescovi A, Snyder E. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol 1999; 9(3):569–98.

    Article  CAS  PubMed  Google Scholar 

  27. Martinez-Serrano A, Rubio F, Navarro B et al. Human neural stem and progenitor cells: in vitro and in vivo properties and potential for gene therapy and cell replacement in the CNS. Curr Gene Ther 2001; 1(3):279–99.

    Article  CAS  PubMed  Google Scholar 

  28. Aghi M, Rabkin S. Viral vectors as therapeutic agents for glioblastoma. Curr Opin Mol Ther 2005; 7(5):419–30.

    CAS  PubMed  Google Scholar 

  29. Leroy P, Slos P, Homann H et al. Cancer immunotherapy by direct in vivo transfer of immunomodulatory genes. Res Immunol 1998; 149(7–8):681–4.

    Article  CAS  PubMed  Google Scholar 

  30. Benedetti S, Pirola B, Pollo B et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000; 6(4):447–50.

    Article  CAS  PubMed  Google Scholar 

  31. Hu J, Yuan X, Belladonna M et al. Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res 2006; 66(17):8887–96.

    Article  CAS  PubMed  Google Scholar 

  32. Ashkenazi A, Dixit V. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999; 11(2):255–60.

    Article  CAS  PubMed  Google Scholar 

  33. Roth W, Isenmann S, Naumann U et al. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Commun 1999; 265(2):479–83.

    Article  CAS  PubMed  Google Scholar 

  34. Snyder E, Deitcher D, Walsh C et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 1992; 68(1):33–51.

    Article  CAS  PubMed  Google Scholar 

  35. Snyder E, Park K, Flax J et al. Potential of neural “stem-like” cells for gene therapy and repair of the degenerating central nervous system. Adv Neurol 1997; 72:121–32.

    CAS  PubMed  Google Scholar 

  36. Zhao C, Deng W, Gage F. Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132(4):645–60.

    Article  CAS  PubMed  Google Scholar 

  37. Jeon J, An J, Kim S et al. Migration of human neural stem cells toward an intracranial glioma. Exp Mol Med 2008; 40(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  38. Villa A, Snyder E, Vescovi A et al. Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol 2000; 161(1):67–84.

    Article  CAS  PubMed  Google Scholar 

  39. Carpenter M, Cui X, Hu Z et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 1999; 158(2):265–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Katz, J., Keenan, B., Snyder, E.Y. (2010). Culture and Manipulation of Neural Stem Cells. In: Jandial, R. (eds) Frontiers in Brain Repair. Advances in Experimental Medicine and Biology, vol 671. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5819-8_2

Download citation

Publish with us

Policies and ethics