Skip to main content

In Vivo Imaging of Cellular Transplants

  • Chapter
Frontiers in Brain Repair

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 671))

Abstract

We will talk about the techniques of in vivo imaging currently used in today’s research and biomedical field, giving a general view of how each technique works and examples of practical applications of each technique. We will cover fluorescent (BL/CL), PET, SPECT and quantum dot imaging. Afterwards, we will cover how in vivo imaging is used in a biomedical sense; more specifically we will see how researchers studying cancer and neurodegenerative disease employ in vivo imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ntziachristos V. Fluorescence molecular imaging. Annu Rev Biomed Eng 2006; 8:1–33.

    Article  CAS  PubMed  Google Scholar 

  2. Roda A, Pasini P, Mirasoli M et al. Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 2004; 22(6):295–303.

    Article  CAS  PubMed  Google Scholar 

  3. Fishell G, Blazeski R, Godement P et al. Optical microscopy. 3. Tracking fluorescently labeled neurons in developing brain. FASEB J 1995; 9(5):324–34.

    CAS  PubMed  Google Scholar 

  4. Lucignani G, Ottobrini L, Martelli C et al. Molecular imaging of cell-mediated cancer immunotherapy. Trends Biotechnol 2006; 24(9):410–8.

    Article  CAS  PubMed  Google Scholar 

  5. Medintz I, Uyeda H, Goldman E et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4(6):435–46.

    Article  CAS  PubMed  Google Scholar 

  6. Xu Y, Piston D, Johnson C. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 1999; 96(1):151–6.

    Article  CAS  PubMed  Google Scholar 

  7. Frangioni J. Self-illuminating quantum dots light the way. Nat Biotechnol 2006; 24(3):326–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ballou B, Lagerholm B, Ernst L et al. Noninvasive imaging of quantum dots in mice. Bioconjug Chem 2004; 15(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  9. Chatziioannou A, Cherry S, Shao Y et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999; 40(7):1164–75.

    CAS  PubMed  Google Scholar 

  10. Surti S, Karp J, Perkins A et al. Imaging performance of A-PET: a small animal PET camera. IEEE Trans Med Imaging 2005; 24(7):844–52.

    Article  PubMed  Google Scholar 

  11. Acton P, Kung H. Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol 2003; 30(8):889–95.

    Article  CAS  PubMed  Google Scholar 

  12. Green M, Seidel J, Vaquero J et al. High resolution PET, SPECT and projection imaging in small animals. Comput Med Imaging Graph 2001; 25(2):79–86.

    Article  CAS  PubMed  Google Scholar 

  13. Ishizu K, Mukai T, Yonekura Y et al. Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 1995; 36(12):2282–7.

    CAS  PubMed  Google Scholar 

  14. Weber D, Ivanovic M. Pinhole SPECT: ultra-high resolution imaging for small animal studies. J Nucl Med 1995; 36(12):2287–9.

    CAS  PubMed  Google Scholar 

  15. Yang Y, Tai Y, Siegel S et al. Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging. Phys Med Biol 2004; 49(12):2527–45.

    Article  PubMed  Google Scholar 

  16. Beekman F, van der Have F, Vastenhouw B et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med 2005; 46(7):1194–200.

    PubMed  Google Scholar 

  17. Eck S, Alavi J, Alavi A et al. Treatment of advanced CNS malignancies with the recombinant adenovirus H5.010RSVTK: a phase I trial. Hum Gene Ther 1996; 7(12):1465–82.

    Article  CAS  PubMed  Google Scholar 

  18. Shand N, Weber F, Mariani L et al. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum Gene Ther 1999; 10(14):2325–35.

    Article  CAS  PubMed  Google Scholar 

  19. Alauddin M, Shahinian A, Gordon E et al. Preclinical evaluation of the penciclovir analog 9-(4-((18) F)fluoro-3-hydroxymethylbutyl)guanine for in vivo measurement of suicide gene expression with PET. J Nucl Med 2001; 42(11):1682–90.

    CAS  PubMed  Google Scholar 

  20. Germano I, Fable J, Gultekin S et al. Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas. J Neurooncol 2003; 65(3):279–89.

    Article  PubMed  Google Scholar 

  21. Gambhir S, Barrio J, Wu L et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998; 39(11):2003–11.

    CAS  PubMed  Google Scholar 

  22. Hoehn M, Wiedermann D, Justicia C et al. Cell tracking using magnetic resonance imaging. J Physiol 2007; 584(Pt 1):25–30.

    Article  CAS  PubMed  Google Scholar 

  23. Wu A, Senter P. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005; 23(9):1137–46.

    Article  CAS  PubMed  Google Scholar 

  24. Kenanova V, Wu A. Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 2006; 3(1):53–70.

    Article  CAS  PubMed  Google Scholar 

  25. Dubey P, Su H, Adonai N et al. Quantitative imaging of the T-cell antitumor response by positron-emission tomography. Proc Natl Acad Sci USA 2003; 100(3):1232–7.

    Article  CAS  PubMed  Google Scholar 

  26. Koehne G, Doubrovin M, Doubrovina E et al. Serial in vivo imaging of the targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 2003; 21(4):405–13.

    Article  CAS  PubMed  Google Scholar 

  27. Adonai N, Nguyen K, Walsh J et al. Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 2002; 99(5):3030–5.

    Article  CAS  PubMed  Google Scholar 

  28. Botti C, Negri D, Seregni E et al. Comparison of three different methods for radiolabelling human activated T-lymphocytes. Eur J Nucl Med 1997; 24(5):497–504.

    CAS  PubMed  Google Scholar 

  29. Daldrup-Link H, Meier R, Rudelius M et al. In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 2005; 15(1):4–13.

    Article  PubMed  Google Scholar 

  30. Schimmelpfennig C, Schulz S, Arber CJ et al. Ex vivo expanded dendritic cells home to T-cell zones of lymphoid organs and survive in vivo after allogeneic bone marrow transplantation. Am J Pathol 2005; 167(5):1321–31.

    CAS  PubMed  Google Scholar 

  31. Edinger M, Cao Y, Verneris M et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 2003; 101(2):640–8.

    Article  CAS  PubMed  Google Scholar 

  32. Trachtenberg J, Chen B, Knott G et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 2002; 420(6917):788–94.

    Article  CAS  PubMed  Google Scholar 

  33. Grutzendler J, Kasthuri N, Gan W. Long-term dendritic spine stability in the adult cortex. Nature 2002; 420(6917):812–6.

    Article  CAS  PubMed  Google Scholar 

  34. Davalos D, Grutzendler J, Yang G et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 8(6):752–8.

    Article  CAS  PubMed  Google Scholar 

  35. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308(5726):1314–8.

    Article  CAS  PubMed  Google Scholar 

  36. Misgeld T, Kerschensteiner M. In vivo imaging of the diseased nervous system. Nat Rev Neurosci 2006; 7(6):449–63.

    Article  CAS  PubMed  Google Scholar 

  37. Kirik D, Breysse N, Björklund T et al. Imaging in cell-based therapy for neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2005; 32(Suppl 2):S417–34.

    Article  Google Scholar 

  38. Gusella J, Wexler N, Conneally P et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 1983; 306(5940):234–8.

    Article  CAS  PubMed  Google Scholar 

  39. Brooks D. PET studies on the function of dopamine in health and Parkinson’s disease. Ann N Y Acad Sci 2003; 991:22–35.

    Article  CAS  PubMed  Google Scholar 

  40. Koepp M, Gunn R, Lawrence A et al. Evidence for striatal dopamine release during a video game. Nature 1998; 393(6682):266–8.

    Article  CAS  PubMed  Google Scholar 

  41. Freed C, Greene P, Breeze R et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344(10):710–9.

    Article  CAS  PubMed  Google Scholar 

  42. Gaura V, Bachoud-Lévi A, Ribeiro M et al. Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 2004; 127(Pt 1):65–72.

    Article  PubMed  Google Scholar 

  43. Holländer H, Mehraein P. (On the mechanics of myelin sphere formation in Wallerian degeneration. Intravital microscopic studies of single degenerating motor fibers of the frog). Z Zellforsch Mikrosk Anat 1966; 72(2):276–80.

    Article  PubMed  Google Scholar 

  44. Williams P, Hall S. Prolonged in vivo observations of normal peripheral nerve fibres and their acute reactions to crush and deliberate trauma. J Anat 1971; 108(Pt 3):397–408.

    CAS  PubMed  Google Scholar 

  45. Pan Y, Misgeld T, Lichtman J et al. Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J Neurosci 2003; 23(36):11479–88.

    CAS  PubMed  Google Scholar 

  46. Bhatt D, Otto S, Depoister B et al. Cyclic AMP-induced repair of zebrafish spinal circuits. Science 2004; 305(5681):254–8.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang S, Boyd J, Delaney K et al. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. J Neurosci 2005; 25(22):5333–8.

    Article  CAS  PubMed  Google Scholar 

  48. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004; 5(5):347–60.

    Article  CAS  PubMed  Google Scholar 

  49. Miller D, Khan O, Sheremata W et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2003; 348(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  50. Hell S. Toward fluorescence nanoscopy. Nat Biotechnol 2003; 21(11):1347–55.

    Article  CAS  PubMed  Google Scholar 

  51. Ntziachristos V, Ripoll J, Wang L et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 2005; 23(3):313–20.

    Article  CAS  PubMed  Google Scholar 

  52. Hao FZ, Konstantin M, George S, Lihong VW. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnology 2006; 24(7):848–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Jandial .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Chan, J., Menon, J.P., Mahajan, R., Jandial, R. (2010). In Vivo Imaging of Cellular Transplants. In: Jandial, R. (eds) Frontiers in Brain Repair. Advances in Experimental Medicine and Biology, vol 671. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5819-8_1

Download citation

Publish with us

Policies and ethics