Skip to main content

Computational Procedures for Model Identification

  • Chapter
  • First Online:

Part of the book series: Systems Biology ((SYSTBIOL))

Abstract

Mathematical models provide abstract representations of the information gained from experimental observations on the structure and function of a particular biological system. Conferring a predictive character on a given mathematical formulation often relies on determining a number of non-measurable parameters that largely condition the model’s response. These parameters can be usually estimated by fitting the model to experimental data. This chapter covers the parameter identification problem, its formulation and solution, and two closely related topics: identifiability and optimal experimental design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Balsa-Canto E, Alonso AA, Banga JR (2008a) Computational procedures for optimal experimental design in biological systems. IET Syst Biol 2(4):163–172

    Article  CAS  PubMed  Google Scholar 

  • Balsa-Canto E, Peifer M, Banga JR et al (2008b) Hybrid optimization method with general switching strategy for parameter estimation. BMC Syst Biol 2:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Banga JR, Versyck KJ, Van Impe JF (2002) Computation of optimal identification experiments for nonlinear dynamic process models: an stochastic global optimization approach. Ind Eng Chem Res 41, 2425–2430

    Article  CAS  Google Scholar 

  • Bock H (1981) Numerical treatment of inverse problems in chemical reaction kinetics. In: K E, P D, W J (eds) Modelling of chemical reaction systems. Springer, New York

    Google Scholar 

  • Bock H (1983) Recent advances in parameter identification techniques for ordinary differential equations. In: P D, E H (ed) Numerical treatment of inverse problems in Differential and Integral Birkhäuser

    Google Scholar 

  • Cho KH, Wolkenhauer O (2003) Analysis and modelling of signal transduction pathways in systems biology. Biochem Soc Trans 31:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Dennis JE, Gay DM and Welsch RE (1981) An adaptive nonlinear least-squares algorithm. ACM Trans Math Software 7(3)

    Google Scholar 

  • Dréo J, Petrowski A, Taillard E, Siarry P (2006) Metaheuristics for hard optimization. Methods and case studies. Springer, New York

    Google Scholar 

  • Egea JA, Rodriguez-Fernandez M, Banga JR, Martí R (2007). Scatter search for chemical and bioprocess optimization. J Glob Opt 37(3):481–503

    Article  Google Scholar 

  • Esposito WR, Floudas C (2000) Global optimization for the parameter estimation of differential-algebraic systems. Ind Eng Chem Res 39:1291–1310

    Article  CAS  Google Scholar 

  • Fletcher R. (1987) Practical methods of optimization. Wiley, UK

    Google Scholar 

  • Floudas CA (2000) Deterministic global optimization: theory, methods and applications. Kluwer Academics, Netherlands

    Book  Google Scholar 

  • Gau CY, Stadtherr MA (2000) Reliable nonlinear parameter estimation using interval analysis: error in variable approach. Comp Chem Eng 24:631–637

    Article  CAS  Google Scholar 

  • Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. Adv Enz Regul 3:425–428

    Article  CAS  Google Scholar 

  • Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I: Nonstiff problems, 2nd edn, Springer, Berlin

    Google Scholar 

  • Hairer E, Wanner G (1996) Solving ordinary differential equations II: Stiff and differential-algebraic problems, 2nd edn, Springer, Berlin

    Book  Google Scholar 

  • Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS (2005). Sundials: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw 31(3):363–396

    Article  Google Scholar 

  • Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkB-NF-kB signaling module: temporal control and selective gene activation. Science 298:1241–1245

    Article  CAS  PubMed  Google Scholar 

  • Janes KA, Lauffenburger DA (2006) A biological approach to computational models of proteomic networks. Curr Op Chem Biol 10:73–80

    Article  CAS  Google Scholar 

  • Klipp E, Liebermeister W (2006) Mathematical modelling of intracellular signaling pathways. BMC Neurosci 7, doi:10.1186/1471-2202-7-S1-S10

    Google Scholar 

  • Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A (2000) Failure to regulate TNF-induced NF-·B and cell death responses in A20-deficient mice. Science 289:2350–2354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leis JR, Kramer MA (1988) Odessa- an ordinary differential-equation solver with explicit simultaneous sensitivity analysis. ACM Trans Math Soft 14:61–67

    Article  Google Scholar 

  • Lin Y, Stadtherr MA (2006) Deterministic global optimization for parameter estimation of dynamic systems. Ind Eng Chem Res 45:8438–8448

    Article  CAS  Google Scholar 

  • Lipniacki T, Paszek P, Brasier AR et al (2004) Mathematical model of NFκB regulatory module. J Theor Biol 228:195–215

    Article  CAS  PubMed  Google Scholar 

  • Ljung L (1999) System identification: theory for the user. Prentice Hall, NJ

    Google Scholar 

  • Mendes P, Kell DB (1998) Nonlinear optimization of biochemical pathways: Applications to metabolic engineering and parameter estimation. Bioinformatics 14:869–883

    Article  CAS  PubMed  Google Scholar 

  • Moles C, Mendes P, Banga J (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474

    Article  CAS  PubMed  Google Scholar 

  • Nash SG, Sofer A (1996) Linear and nonlinear programming. McGraw-Hill, New York, NY

    Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  • Pardalos P, Romeijna H, Tuyb H (2000) Recent developments and trends in global optimization. J Comp App Math 124:209–228

    Article  Google Scholar 

  • Peifer M, Timmer J (2007) Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting. IET Syst Biol 1(2):78–88

    Article  CAS  PubMed  Google Scholar 

  • Pinter J (1996) Global optimization in action. Continuous and Lipschitz optimization: Algorithms, implementations and applications. Kluwer, Netherlands

    Book  Google Scholar 

  • Polisetty P, Voit E, Gatzke E (2006) Identification of metabolic system parameters using global optimization methods. Theor Biol Med Mod 3:4

    Article  Google Scholar 

  • Rodriguez-Fernandez M, Egea JA, Banga JR (2006a) Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinform 7:483

    Article  Google Scholar 

  • Rodriguez-Fernandez M, Mendes P, Banga JR (2006b) A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Bio Syst 83(2–3):248–265

    CAS  Google Scholar 

  • Runarsson T, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comp 564:284–294

    Article  Google Scholar 

  • Schittkowski K (2002) Numerical data fitting in dynamical systems. Kluwer, Netherlands

    Book  Google Scholar 

  • Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley series in probability and mathematical statistics. Wiley, New York

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  Google Scholar 

  • Sugimoto M, Kikuchi S, Tomita M (2005) Reverse engineering of biochemical equations from time-course data by means of genetic programming. BioSystems 80:155–164

    Article  CAS  PubMed  Google Scholar 

  • Swameye I, Müller T, Timmer J et al (2003) Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by data-based modeling. Proc Natl Acad Sci 100(3):1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Vera J, Balsa-Canto E, Wellstead P et al (2007) Power-law models of signal transduction pathways. Cell Signal 19:1531–1541

    Article  CAS  PubMed  Google Scholar 

  • Walter E, Pronzato L (1997) Identification of parametric models from experimental data. Springer, New York

    Google Scholar 

  • Wolkenhauer O, Ullah M, Kolch W et al (2004) Modeling and simulation of intracellular dynamics: Choosing an appropriate framework. IEEE Trans. Nanobiosci 3(3):200–207

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Spanish MICINN project “MultiSysBio,” ref. DPI2008-06880-C03-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Balsa-Canto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Balsa-Canto, E., Banga, J.R. (2010). Computational Procedures for Model Identification. In: Choi, S. (eds) Systems Biology for Signaling Networks. Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5797-9_5

Download citation

Publish with us

Policies and ethics