From Microarray to Biology

Chapter
Part of the Systems Biology book series (SYSTBIOL)

Abstract

Microarrays became an essential part of the tools available for a molecular biologist. However, the complexity of data (thousands of genes, several replicates, or time points) poses a significant challenge for data interpretation. Important questions do not have simple answers. Which experimental design to use? How to handle several, often heterogeneous, microarray data sets? Which software tools are available for microarray data analysis? How to use statistics for identification of reproducible results? Given the complexity of the approach to microarray data analysis we focus on the best and most reliable techniques and tools. The reader is encouraged to explore other exciting possibilities in the microarray field and other high-information/high-throughput techniques. This chapter provides an overview of current microarray technologies and provides some answers to the questions above.

Keywords

Microarray System analysis Gene expression profile Gene regulation Gene networks Gene expression analysis 

References

  1. Arp R, Smith B (2008) Ontologies of cellular networks. Sci Signal 1:mr2Google Scholar
  2. Benjamini Y, Drai D, Elmer G et al (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284PubMedCrossRefGoogle Scholar
  3. Blaveri E, Simko JP, Korkola JE et al (2005) Bladder cancer outcome and subtype classification by gene expression. Clin Cancer Res 11:4044–4055PubMedCrossRefGoogle Scholar
  4. Chen T, He HL, Church GM (1999) Modeling gene expression with differential equations. Pac Symp Biocomput 29–40Google Scholar
  5. Chen X, Xu H, Yuan P et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117PubMedCrossRefGoogle Scholar
  6. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:1664–1669PubMedCrossRefGoogle Scholar
  7. de Hoon MJ, Imoto S, Kobayashi K, Ogasawara N, Miyano S (2003) Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. Pac Symp Biocomput 17–28Google Scholar
  8. Dozmorov MG, Kyker KD, Hauser PJ et al (2008) From microarray to biology: An integrated experimental, statistical and in silico analysis of how the extracellular matrix modulates the phenotype of cancer cells. Bioinformatics 9:S4Google Scholar
  9. Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98:13763–13768PubMedCrossRefGoogle Scholar
  10. Ein-Dor L, Kela I, Getz G et al (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178PubMedCrossRefGoogle Scholar
  11. Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 103:5923–5928PubMedCrossRefGoogle Scholar
  12. Eisen MB, Spellman PT, Brown PO et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868PubMedCrossRefGoogle Scholar
  13. Hardiman G (2004) Microarray platforms—comparisons and contrasts. Pharmacogenomics 5:487–502PubMedCrossRefGoogle Scholar
  14. Hershey AM, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56PubMedCentralPubMedCrossRefGoogle Scholar
  15. Savageau, M. A. 1976 Biochemical systems analysis: a study of function and design in molecular biology. Addison-Wesley, Reading, MAGoogle Scholar
  16. Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedCrossRefGoogle Scholar
  17. Southern EM (1992) Detection of specific sequences among DNA fragments separated by gel electrophoresis 1975. Biotechnology 24:122–139PubMedGoogle Scholar
  18. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445PubMedCrossRefGoogle Scholar
  19. Strauss R, Sova P, Liu Y et al (2009) Epithelial phenotype confers resistance of ovarian cancer cells to oncolytic adenoviruses. Cancer Res 69:5115–5125PubMedCentralPubMedCrossRefGoogle Scholar
  20. Törönen P, Kolehmainen M, Wong G et al (1999) Analysis of gene expression data using self-organizing maps. FEBS Lett 451:142–146PubMedCrossRefGoogle Scholar
  21. van ’t Veer LJ, Dai H, van de Vivjer MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536PubMedCrossRefGoogle Scholar
  22. Von Bertalanaffy L (1933) Modern theories of development: An introduction to theoretical biology. Oxford University Press, New YorkGoogle Scholar
  23. Wall PK, Leebens-Mack J, Chanderbali AS et al (2009) Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10:347PubMedCentralPubMedCrossRefGoogle Scholar
  24. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. Nature 171:737–738PubMedCrossRefGoogle Scholar
  25. Wren JD (2009) A global meta-analysis of microarray expression data to predict unknown gene functions and estimate the literature-data divide. Bioinformatics 25:1694–1701PubMedCrossRefGoogle Scholar
  26. Wu X, Dewey TG (2006) From microarray to biological networks: Analysis of gene expression profiles. Methods Mol Biol 316:35–48PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departments of UrologyOklahoma University Health Sciences CenterOklahoma CityUSA
  2. 2.Departments of Urology and Biochemistry and Molecular Biology and Oklahoma University Cancer InstituteOklahoma University Health Sciences CenterOklahoma CityUSA

Personalised recommendations