Pathway Crosstalk Network

Part of the Systems Biology book series (SYSTBIOL)


Common diseases such as cancer, diabetes, obesity, and asthma are caused by defects in multiple genes and pathways. Thus, it is not surprising that the current one-target-one-compound approach in drug discovery and development has failed to deliver as many efficacious medicines as expected in the post-genomic era. Network biology offers new opportunities for pharmaceutical industry as it aims at understanding diseases by investigating disease mechanism at the network level. We proposed a novel way to study biological networks through pathway crosstalk. We developed a computational approach to systematically detect crosstalk among pathways based on protein interactions between pathway members. We built a global pathway crosstalk network that includes 580 pathways and covers 4,753 genes. This network exhibits the same characteristics as gene networks such as the scale-free property and clustering of functionally related network nodes. We further used this network to understand colorectal cancer progression to metastasis based on transcriptomic data.


Pathway crosstalk Drug discovery Network analysis Micro array 



This work was supported by Computational Biology, Drug Discovery, and GlaxoSmithKline R&D. I thank Dilip Rajagopalan, Pankaj Agarwal, and Sihai D. Zhao for their contributions to the work (Li et al. 2008; Zhao and Li 2007) cited in this chapter.


  1. Al Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20:578–580PubMedCrossRefGoogle Scholar
  2. Bader GD, Betel D, Hogue CW (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31:248–250PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bagheri S, Nosrati M, Li S et al (2006) Genes and pathways downstream of telomerase in melanoma metastasis. Proc Natl Acad Sci USA 103:11306–11311PubMedCrossRefGoogle Scholar
  4. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113PubMedCrossRefGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300Google Scholar
  6. Brohee S, Faust K, Lima-Mendez G et al (2008) Network Analysis Tools: from biological networks to clusters and pathways. Nat Protoc 3:1616–1629PubMedCrossRefGoogle Scholar
  7. Chatr-aryamontri A, Ceol A, Palazzi LM et al (2007) MINT: the molecular INTeraction database. Nucleic Acids Res 35:D572–D574PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen J, Yuan B (2006) Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22:2283–2290PubMedCrossRefGoogle Scholar
  9. Chen Y, Zhu J, Lum PY et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435PubMedCentralPubMedCrossRefGoogle Scholar
  10. Christensen JG, Burrows J, Salgia R (2005) c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 225:1–26PubMedCrossRefGoogle Scholar
  11. Chua HN, Sung WK, Wong L (2006) Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22:1623–1630PubMedCrossRefGoogle Scholar
  12. Collins SR, Miller KM, Maas NL et al (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446:806–810PubMedCrossRefGoogle Scholar
  13. Dollery CT (2007) Beyond genomics. Clin Pharmacol Ther 82:366–370PubMedCrossRefGoogle Scholar
  14. Giot L, Bader JS, Brouwer C et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736PubMedCrossRefGoogle Scholar
  15. Goeman JJ, Buhlmann P (2007) Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23:980–987PubMedCrossRefGoogle Scholar
  16. Han JD (2008) Understanding biological functions through molecular networks. Cell Res 18: 224–237PubMedCrossRefGoogle Scholar
  17. Han JD, Bertin N, Hao T et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93PubMedCrossRefGoogle Scholar
  18. Hartwell LH, Hopfield JJ, Leibler S et al (1999) From molecular to modular cell biology. Nature 402:C47–C52PubMedCrossRefGoogle Scholar
  19. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690PubMedCrossRefGoogle Scholar
  20. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730PubMedCrossRefGoogle Scholar
  21. Huang Y, Li H, Hu H et al (2007) Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 23:i222–i229PubMedCrossRefGoogle Scholar
  22. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372PubMedCrossRefGoogle Scholar
  23. Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652PubMedCrossRefGoogle Scholar
  24. Jeong H, Mason SP, Barabasi AL et al (2001) Lethality and centrality in protein networks. Nature 411:41–42PubMedCrossRefGoogle Scholar
  25. Jiang Z, Gentleman R (2007) Extensions to gene set enrichment. Bioinformatics 23:306–313PubMedCrossRefGoogle Scholar
  26. Keller MP, Choi Y, Wang P et al (2008) A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18:706–716PubMedCrossRefGoogle Scholar
  27. Lage K, Karlberg EO, Storling ZM et al (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25:309–316PubMedCrossRefGoogle Scholar
  28. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  29. Lee I, Date SV, Adai AT et al (2004) A probabilistic functional network of yeast genes. Science 306:1555–1558PubMedCrossRefGoogle Scholar
  30. Li S, Armstrong CM, Bertin N et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543PubMedCentralPubMedCrossRefGoogle Scholar
  31. Li Y, Agarwal P, Rajagopalan D (2008) A global pathway crosstalk network. Bioinformatics 24:1442–1447PubMedCrossRefGoogle Scholar
  32. Liu ET (2005) Systems biology, integrative biology, predictive biology. Cell 121:505–506PubMedCrossRefGoogle Scholar
  33. Liu J, Ghanim M, Xue L et al (2009) Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 323:1218–1222PubMedCentralPubMedCrossRefGoogle Scholar
  34. Loscalzo J, Kohane I, Barabasi AL (2007) Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol 3:124PubMedCentralPubMedCrossRefGoogle Scholar
  35. Macara IG, Lounsbury KM, Richards SA et al (1996) The Ras superfamily of GTPases. FASEB J 10:625–630PubMedGoogle Scholar
  36. Mani KM, Lefebvre C, Wang K et al (2008) A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 4:169PubMedCentralPubMedCrossRefGoogle Scholar
  37. Mercurio AM, Lipscomb EA, Bachelder RE (2005) Non-angiogenic functions of VEGF in breast cancer. J Mammary Gland Biol Neoplasia 10:283–290PubMedCrossRefGoogle Scholar
  38. Milo R, Shen-Orr S, Itzkovitz S et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827PubMedCrossRefGoogle Scholar
  39. Mishra GR, Suresh M, Kumaran K et al (2006) Human protein reference database – 2006 update. Nucleic Acids Res 34:D411–D414PubMedCentralPubMedCrossRefGoogle Scholar
  40. Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMedCrossRefGoogle Scholar
  41. Nevins JR (2001) The Rb/E2F pathway and cancer. Hum Mol Genet 10:699–703PubMedCrossRefGoogle Scholar
  42. Orth AP, Batalov S, Perrone M et al (2004) The promise of genomics to identify novel therapeutic targets. Expert Opin Ther Targets 8:587–596PubMedCrossRefGoogle Scholar
  43. Orton RJ, Sturm OE, Vyshemirsky V et al (2005) Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 392:249–261PubMedCrossRefGoogle Scholar
  44. Pang H, Lin A, Holford M et al (2006) Pathway analysis using random forests classification and regression. Bioinformatics 22:2028–2036PubMedCrossRefGoogle Scholar
  45. Park J, Lee DS, Christakis NA et al (2009) The impact of cellular networks on disease comorbidity. Mol Syst Biol 5:262PubMedCentralPubMedCrossRefGoogle Scholar
  46. Pawson T, Linding R (2008) Network medicine. FEBS Lett 582:1266–1270PubMedCrossRefGoogle Scholar
  47. Pereira-Leal JB, Enright AJ, Ouzounis CA (2004) Detection of functional modules from protein interaction networks. Proteins 54:49–57PubMedCrossRefGoogle Scholar
  48. Prelic A, Bleuler S, Zimmermann P et al (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22:1122–1129PubMedCrossRefGoogle Scholar
  49. Provenzani A, Fronza R, Loreni F et al (2006) Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis. Carcinogenesis 27:1323–1333PubMedCrossRefGoogle Scholar
  50. Rajagopalan D, Agarwal P (2005) Inferring pathways from gene lists using a literature-derived network of biological relationships. Bioinformatics 21:788–793PubMedCrossRefGoogle Scholar
  51. Ramani AK, Bunescu RC, Mooney RJ et al (2005) Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol 6:R40PubMedCentralPubMedCrossRefGoogle Scholar
  52. Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180PubMedCentralPubMedCrossRefGoogle Scholar
  53. Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci USA 100:1128–1133PubMedCrossRefGoogle Scholar
  54. Sartor MA, Leikauf GD, Medvedovic M (2009) LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 25:211–217PubMedCrossRefGoogle Scholar
  55. Schadt EE, Friend SH, Shaywitz DA (2009) A network view of disease and compound screening. Nat Rev Drug Discov 8:286–295PubMedCrossRefGoogle Scholar
  56. Schadt EE, Lamb J, Yang X et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717PubMedCentralPubMedCrossRefGoogle Scholar
  57. Segal E, Friedman N, Koller D et al (2004) A module map showing conditional activity of expression modules in cancer. Nat Genet 36:1090–1098PubMedCrossRefGoogle Scholar
  58. Segal E, Shapira M, Regev A et al (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34:166–176PubMedCrossRefGoogle Scholar
  59. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 100:12123–12128PubMedCrossRefGoogle Scholar
  60. Stein LD (2004) Using the Reactome database. Curr Protoc Bioinform Chapter 8:UnitGoogle Scholar
  61. Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968PubMedCrossRefGoogle Scholar
  62. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550PubMedCrossRefGoogle Scholar
  63. Sun N, Zhao H (2004) Genomic approaches in dissecting complex biological pathways. Pharmacogenomics 5:163–179PubMedCrossRefGoogle Scholar
  64. Tai F, Pan W (2007) Incorporating prior knowledge of gene functional groups into regularized discriminant analysis of microarray data. Bioinformatics 23:3170–3177PubMedCrossRefGoogle Scholar
  65. Tanay A, Sharan R, Kupiec M et al (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci USA 101:2981–2986PubMedCrossRefGoogle Scholar
  66. The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678PubMedCentralCrossRefGoogle Scholar
  67. Tong AH, Lesage G, Bader GD et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813PubMedCrossRefGoogle Scholar
  68. Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627PubMedCrossRefGoogle Scholar
  69. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  70. Voy BH, Scharff JA, Perkins AD et al (2006) Extracting gene networks for low-dose radiation using graph theoretical algorithms. PLoS Comput Biol 2:e89PubMedCentralPubMedCrossRefGoogle Scholar
  71. Wang J, Loberg R, Taichman RS (2006) The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25:573–587PubMedCrossRefGoogle Scholar
  72. Wang L, Zhang B, Wolfinger RD et al (2008a) An integrated approach for the analysis of biological pathways using mixed models. PLoS Genet 4:e1000115PubMedCentralPubMedCrossRefGoogle Scholar
  73. Wang X, Dalkic E, Wu M et al (2008b) Gene module level analysis: identification to networks and dynamics. Curr Opin Biotechnol 19:482–491PubMedCentralPubMedCrossRefGoogle Scholar
  74. Wei Z, Li H (2007) Nonparametric pathway-based regression models for analysis of genomic data. Biostatistics 8:265–284PubMedCrossRefGoogle Scholar
  75. Wuchty S, Oltvai ZN, Barabasi AL (2003) Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet 35:176–179PubMedCrossRefGoogle Scholar
  76. Xia Y, Yu H, Jansen R et al (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73:1051–1087PubMedCrossRefGoogle Scholar
  77. Xue H, Xian B, Dong D et al (2007) A modular network model of aging. Mol Syst Biol 3:147PubMedCentralPubMedCrossRefGoogle Scholar
  78. Yang X, Deignan JL, Qi H et al (2009) Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet 41:415–423PubMedCentralPubMedCrossRefGoogle Scholar
  79. Yeger-Lotem E, Sattath S, Kashtan N et al (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci USA 101: 5934–5939PubMedCrossRefGoogle Scholar
  80. Zhang W, Gordon M, Lenz HJ (2006) Novel approaches to treatment of advanced colorectal cancer with anti-EGFR monoclonal antibodies. Ann Med 38:545–551PubMedCrossRefGoogle Scholar
  81. Zhao SD, Li Y (2007) Extracting functional modules from biological pathways. Nat Preced
  82. Zhu J, Zhang B, Schadt EE (2008) A systems biology approach to drug discovery. Adv Genet 60:603–635PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Computational BiologyGlaxoSmithKline R&DKing of PrussiaUSA

Personalised recommendations