Advertisement

Bone Aging

  • Arthur N. Lau
  • Jonathan D. AdachiEmail author
Chapter

Abstract

The aging musculoskeletal system has a profound effect on the health of an individual. In this chapter, the author outlines some of the key changes in bone physiology during aging and explains how they contribute to osteoporosis and the increased fracture risk in the elderly.

Keywords

Anatomy Osteoporosis Fracture Osteomalacia Elderly 

References

  1. 1.
    Parfitt AM. The coupling of bone formation to bone resorption: a critical analysis of the concept and its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res. 1982;4:1–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Chan GK, Duque G. Age related bone loss: old bone, new facts. Gerontology. 2002;48:62–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Kloss FR, Gassner R. Bone and aging: effects on the maxillofacial skeleton. Exp Gerontol. 2006;41:123–9.CrossRefPubMedGoogle Scholar
  4. 4.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy. Osteoporosis prevention, diagnosis and therapy. JAMA. 2001;285:785–95.CrossRefGoogle Scholar
  5. 5.
    Nevitt M, Chen P, Dore R, et al. Reduced risk of back pain following teriparatide treatment: a meta-analysis. Osteoporos Int. 2006;17:273–80.CrossRefPubMedGoogle Scholar
  6. 6.
    De Martinis M, Franceschi C, Monti D, et al. Inflammation-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett. 2005;579:2035–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Bruunsgaard H. Effects of tumor necrosis factor-alpha and interleukin-6 in elderly populations. Eur Cytokine Netw. 2002;13:389–91.PubMedGoogle Scholar
  8. 8.
    Nanes MSL. Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene. 2003;4:1–15.CrossRefGoogle Scholar
  9. 9.
    Jilka RL, Hangoc G, Girasole G, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992;257:88–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Freemont AJ, Hoyland AJ. Morphology, mechanisms and ­pathology of musculoskeletal ageing. J Pathol. 2007;21:252–9.CrossRefGoogle Scholar
  11. 11.
    Sonntag WE, Lynch CD, et al. Pleiotrophic effects of growth ­hormone and insulin-like growth factor-1 on biological aging: ­inferences from moderate caloric-restricted animals. J Gerontol A Biol Sci Med Sci. 1999;54:521–38.CrossRefGoogle Scholar
  12. 12.
    Frystyk J. Aging somatropic axis: mechanisms and implications of insulin-like growth factor-related binding protein adaptation. Endocrinol Metab Clin North Am. 2005;34:865–76.CrossRefPubMedGoogle Scholar
  13. 13.
    Zofkova I. Pathophysiological and clinical importance of insulin-like growth factor-I with respect to bone metabolism. Physiol Res. 2003;52:657–79.PubMedGoogle Scholar
  14. 14.
    Lombardi G, Tauchmanova L, Di Somma C, et al. Somatopause: dimetabolic and bone effects. J Endocriol Invest. 2005;28:36–42.Google Scholar
  15. 15.
    Wuster C, Harle U, Rehn U, et al. Benefits of growth hormone ­treatment on bone metabolism, bone density and bone strength in growth hormone deficiency and osteoporosis. Growth Horm IGF Res. 1998;8:87–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic ­therapy for osteoporosis. N Engl J Med. 2007;357:905–16.CrossRefPubMedGoogle Scholar
  17. 17.
    Benhamou CL. Effects of osteoporosis medications on bone ­quality. Joint Bone Spine. 2007;74:39–47.CrossRefPubMedGoogle Scholar
  18. 18.
    Cummings SR, Melton LJ. Epidemiology and outcomes of ­osteoporotic fractures. Lancet. 2002;359:1761–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Woodhouse A. BMD at varOsteoporos Intus sites for the prediction of hip fractures: a meta analysis. JBMR. 2000;15:1–145.CrossRefGoogle Scholar
  20. 20.
    Hui et al. JCI. 1988;81:1804–9.Google Scholar
  21. 21.
    Gruber R, Koch H, Doll BA, et al. Fracture healing in the elderly patient. Exp Gerontol. 2006;41:1080–93.CrossRefPubMedGoogle Scholar
  22. 22.
    Lu C, Miclau T, Hu D, et al. Cellular basis for age-related changes in fracture repair. J Orthop Res. 2005;23:1300–7.PubMedGoogle Scholar
  23. 23.
    Brandes RP, Fleming I, Busse R. Endothelial aging. Cardiovasc Res. 2005;66:286–94.CrossRefPubMedGoogle Scholar
  24. 24.
    Bergman RJ, Gazit D, Khan AJ, et al. Age related changes in ­osteogenic stem cells in mice. J Bone Miner Res. 1996;11:568–77.CrossRefPubMedGoogle Scholar
  25. 25.
    Stenderup K, Justesen J, Clausen C, et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33:919–26.CrossRefPubMedGoogle Scholar
  26. 26.
    Shiels MJ, Mastro AM, Gay CV. The effect of donor age on the sensitivity of osteoblasts to the proliferative effects of TGF-beta and 1,25(OH(2)) vitamin D(3). Life Sci. 2002;70:2967–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Farmer ME. Race and sex differences in hip fracture incidence. Am J Public Health. 1984;74(12):1374–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Schuitt SC, Vander Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.CrossRefGoogle Scholar
  29. 29.
    Cummings SR, Cawthon PM, Ensrud KE, et al. Osteoporotic ­fractures in men (MrOS) Research Groups; Study of osteoporotic fractures research group. BMD and risk of hip and non-vertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res. 2006;21:1550–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Agnusdei D, Gerardi D, Camporeala A, et al. The European ­vertebral osteoporosis study in Siena, Italy. Bone. 1994;16:118S.Google Scholar
  31. 31.
    Center JR, Nguyen TV, Schneider D, et al. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353:878–82.CrossRefPubMedGoogle Scholar
  32. 32.
    Nordström P, Neovius M, Nordström A. Early and rapid bone ­mineral density loss of the proximal femur in men. J Clin Endocrinol Metab. 2007;92:1902–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Orwell ES, Oviatt SK, McClung MR, et al. The rate of bone mineral loss in normal men and the effects of calcium and cholecalciferol supplementation. Ann Intern Med. 1990;112:29–34.Google Scholar
  34. 34.
    Jones G, Nguyen T, Sambrook P, et al. Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ. 1994;309:691–5.PubMedGoogle Scholar
  35. 35.
    Bismar H, Diel I, Ziegler R, et al. Increased cytokine secretion by human bone marrow cells after menopause or discontinuation of estrogen replacement. J Clin Endocrinol Metab. 1995;80:3351–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Slemana CW, Christian JC, Reed T, et al. Long-term bone loss in men: effects of genetic and environmental factors. Ann Intern Med. 1992;117:286–91.Google Scholar
  37. 37.
    Khosla S, Melton LJ, Atkinson EJ, et al. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab. 1998;83:2266–74.CrossRefPubMedGoogle Scholar
  38. 38.
    Greendale GA, Edelstein S, Barrett-Conner E. Endogenous sex ­steroids and bone mineral density in older women and men: the Rancho Bernardo Study. J Bone Miner Res. 1997;12:1833–43.CrossRefPubMedGoogle Scholar
  39. 39.
    Epstein S, Bryce G, Hinman JW, et al. The influence of age on bone mineral regulating hormones. Bone. 1986;7:421–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Landin-wilhelmsen K, Wilhelmsen L, Lappas G, et al. Serum intact parathyroid hormone in a random population sample of men and women: relationship to anthropometry, life-style factors, blood pressure, and vitamin D. Calcif Tissue Int. 1995;56:104–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.McMaster University/St. Joseph’s HealthcareHamiltonCanada

Personalised recommendations