Disease-Modifying Antirheumatic Drug Use in Older Rheumatoid Arthritis Patients

  • Sogol S. Amjadi
  • Veena K. Ranganath
  • Daniel E. FurstEmail author


The aging process is complex and there is a high degree of variability in the rate at which an individual ages. Presently, the aging process and its effects in the body are not fully understood. In general, there are some differences in pharmacokinetic and pharmacodynamics effects of medications when comparing younger and older patients. Some of the most important changes that occur with aging are within the liver and kidneys. Although liver function tests such as serum bilirubin, cholesterol, and alkaline phosphatase are not significantly different between older and younger adults, decreased hepatic blood flow, liver mass, and enzymatic activity are seen in many older adults. However, these changes are not necessarily clinically significant and do not take place in all elderly patients. Renal dysfunction requires that some drugs such as methotrexate are dose-adjusted in the elderly patients. Pharmacodynamic changes in older patients may result in an altered sensitivity to drugs as well, resulting in increased adverse events or decreased/increased clinical response. Overall, there are not many clinically important pharmacodynamic changes when examining disease-modifying antirheumatic drugs (DMARDs) or biologic agents used in rheumatoid arthritis. Currently, the available data suggests that conventional DMARDs and biologic agents are similarly effective in the old and the young. Hence, older RA patients should not be excluded from the usual use of these agents to obtain optimal control of disease. While most studies suggest effective and safe outcomes associated with the use of DMARDs/biologics in the elderly, it is important to keep in mind the possibility of an increased incidence or severity of drug toxicity, particularly among the frail elderly who are an especially vulnerable group of patients. Frail older patients may have poor cardiac, renal, and/or liver function, and a decreased immune function (hence a higher risk for infections). Consequently, their treatment should be approached cautiously, keeping in mind the pharmacokinetic and pharmacodynamic changes that may occur with aging. This chapter briefly reviews the data regarding the use of conventional DMARDs and biologic agents in rheumatoid arthritis patients with an emphasis on their use in older patients where data is available.


Rheumatoid arthritis Elderly Disease-modifying antirheumatic drugs Biologic agents 


  1. 1.
    Cobb S, Anderson F, Bauer W. Length of life and cause of death in rheumatoid arthritis. N Engl J Med. 1953;249(14):553–6.PubMedGoogle Scholar
  2. 2.
    Pincus T, Brooks RH, Callahan LF. Prediction of long-term mortality in patients with rheumatoid arthritis according to simple questionnaire and joint count measures. Ann Intern Med. 1994;120(1):26–34.PubMedGoogle Scholar
  3. 3.
    Doran MF, Pond GR, Crowson CS, O’Fallon WM, Gabriel SE. Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year period. Arthritis Rheum. 2002;46(3):625–31.PubMedGoogle Scholar
  4. 4.
    Rasch EK, Hirsch R, Paulose-Ram R, Hochberg MC. Prevalence of rheumatoid arthritis in persons 60 years of age and older in the United States: effect of different methods of case classification. Arthritis Rheum. 2003;48(4):917–26.PubMedGoogle Scholar
  5. 5.
    O’Dell JR. Therapeutic strategies for rheumatoid arthritis. N Engl J Med. 2004;350(25):2591–602.PubMedGoogle Scholar
  6. 6.
    Tutuncu Z, Kavanaugh A. Rheumatic disease in the elderly: rheumatoid arthritis. Clin Geriatr Med. 2005;21(3):513–25. vi.PubMedGoogle Scholar
  7. 7.
    Schmajuk G, Schneeweiss S, Katz JN, Weinblatt ME, Setoguchi S, Avorn J, et al. Treatment of older adult patients diagnosed with rheumatoid arthritis: improved but not optimal. Arthritis Rheum. 2007;57(6):928–34.PubMedGoogle Scholar
  8. 8.
    Schiff MH, Yu EB, Weinblatt ME, Moreland LW, Genovese MC, White B, et al. Long-term experience with etanercept in the treatment of rheumatoid arthritis in elderly and younger patients: patient-reported outcomes from multiple controlled and open-label extension studies. Drugs Aging. 2006;23(2):167–78.PubMedGoogle Scholar
  9. 9.
    Koller MD, Aletaha D, Funovits J, Pangan A, Baker D, Smolen JS. Response of elderly patients with rheumatoid arthritis to methotrexate or TNF inhibitors compared with younger patients. Rheumatology (Oxford). 2009;48(12):1575–80.Google Scholar
  10. 10.
    Bathon JM, Fleischmann RM, Van der HD, Tesser JR, Peloso PM, Chon Y, et al. Safety and efficacy of etanercept treatment in elderly subjects with rheumatoid arthritis. J Rheumatol. 2006;33(2):234–43.PubMedGoogle Scholar
  11. 11.
    Fleischmann RM, Baumgartner SW, Tindall EA, Weaver AL, Moreland LW, Schiff MH, et al. Response to etanercept (Enbrel) in elderly patients with rheumatoid arthritis: a retrospective analysis of clinical trial results. J Rheumatol. 2003;30(4):691–6.PubMedGoogle Scholar
  12. 12.
    Fleischmann R, Baumgartner SW, Weisman MH, Liu T, White B, Peloso P. Long term safety of etanercept in elderly subjects with rheumatic diseases. Ann Rheum Dis. 2006;65(3):379–84.PubMedGoogle Scholar
  13. 13.
    Mikuls T, Saag K, Criswell L, Merlino L, Cerhan JR. Health related quality of life in women with elderly onset rheumatoid arthritis. J Rheumatol. 2003;30(5):952–7.PubMedGoogle Scholar
  14. 14.
    Moesmann G. Subacute rheumatoid arthritis in old age. I. Definitions and methods. Acta Rheumatol Scand. 1968;14(1) :14–23.PubMedGoogle Scholar
  15. 15.
    Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6–14.PubMedGoogle Scholar
  16. 16.
    Oberbauer R, Krivanek P, Turnheim K. Pharmacokinetics of indomethacin in the elderly. Clin Pharmacokinet. 1993;24(5):428–34.PubMedGoogle Scholar
  17. 17.
    Buskirk ER, Hodgson JL. Age and aerobic power: the rate of change in men and women. Fed Proc. 1987;46(5):1824–9.PubMedGoogle Scholar
  18. 18.
    Grandison MK, Boudinot FD. Age-related changes in protein binding of drugs: implications for therapy. Clin Pharmacokinet. 2000;38(3):271–90.PubMedGoogle Scholar
  19. 19.
    Van den Ouweland FA, Jansen PA, Tan Y, van de Putte LB, Van Ginneken CA, Gribnau FW. Pharmacokinetics of high-dosage naproxen in elderly patients. Int J Clin Pharmacol Ther Toxicol. 1988;26(3):143–7.PubMedGoogle Scholar
  20. 20.
    Lindup WE, Orme MC. Clinical pharmacology: plasma protein binding of drugs. Br Med J (Clin Res Ed). 1981;282(6259):212–4.Google Scholar
  21. 21.
    Turnheim K. When drug therapy gets old: pharmacokinetics and pharmacodynamics in the elderly. Exp Gerontol. 2003;38(8):843–53.PubMedGoogle Scholar
  22. 22.
    Ritz P. Chronic cellular dehydration in the aged patient. J Gerontol A Biol Sci Med Sci. 2001;56(6):M349–52.PubMedGoogle Scholar
  23. 23.
    Schoeller DA. Changes in total body water with age. Am J Clin Nutr. 1989;50(5 Suppl):1176–81.PubMedGoogle Scholar
  24. 24.
    Durnas C, Loi CM, Cusack BJ. Hepatic drug metabolism and aging. Clin Pharmacokinet. 1990;19(5):359–89.PubMedGoogle Scholar
  25. 25.
    Le Couteur DG, Hickey HM, Harvey PJ, McLean AJ. Oxidative injury reproduces age-related impairment of oxygen-dependent drug metabolism. Pharmacol Toxicol. 1999;85(5):230–2.PubMedGoogle Scholar
  26. 26.
    Abrams WB. Cardiovascular drugs in the elderly. Chest. 1990;98(4):980–6.PubMedGoogle Scholar
  27. 27.
    Hughes SG. Prescribing for the elderly patient: why do we need to exercise caution? Br J Clin Pharmacol. 1998;46(6):531–3.PubMedGoogle Scholar
  28. 28.
    Rawlins MD, James OF, Williams FM, Wynne H, Woodhouse KW. Age and the metabolism of drugs. Q J Med. 1987;64(243):545–7.PubMedGoogle Scholar
  29. 29.
    Le Couteur DG, McLean AJ. The aging liver. Drug clearance and an oxygen diffusion barrier hypothesis Clin Pharmacokinet. 1998;34(5):359–73.Google Scholar
  30. 30.
    Kinirons MT, O’Mahony MS. Drug metabolism and ageing. Br J Clin Pharmacol. 2004;57(5):540–4.PubMedGoogle Scholar
  31. 31.
    Ritch AE, Perera WN, Jones CJ. Pharmacokinetics of azapropazone in the elderly. Br J Clin Pharmacol. 1982;14(1):116–9.PubMedGoogle Scholar
  32. 32.
    Uwai Y, Saito H, Inui K. Interaction between methotrexate and nonsteroidal anti-inflammatory drugs in organic anion transporter. Eur J Pharmacol. 2000;409(1):31–6.PubMedGoogle Scholar
  33. 33.
    Turnheim K. Drug dosage in the elderly. Is it rational? Drugs Aging. 1998;13(5):357–79.PubMedGoogle Scholar
  34. 34.
    Bressler R, Bahl JJ. Principles of drug therapy for the elderly patient. Mayo Clin Proc. 2003;78(12):1564–77.PubMedGoogle Scholar
  35. 35.
    Spencer FA, Gore JM, Lessard D, Emery C, Pacifico L, Reed G, et al. Venous thromboembolism in the elderly. A community-based perspective. Thromb Haemost. 2008;100(5):780–8.PubMedGoogle Scholar
  36. 36.
    Beyth RJ, Shorr RI. Principles of drug therapy in older patients: rational drug prescribing. Clin Geriatr Med. 2002;18(3):577–92.PubMedGoogle Scholar
  37. 37.
    Noble RE. Drug therapy in the elderly. Metabolism. 2003;52(10 Suppl 2):27–30.PubMedGoogle Scholar
  38. 38.
    Grigor RR, Spitz PW, Furst DE. Salicylate toxicity in elderly patients with rheumatoid arthritis. J Rheumatol. 1987;14(1):60–6.PubMedGoogle Scholar
  39. 39.
    Quinn MA, Conaghan PG, O’Connor PJ, Karim Z, Greenstein A, Brown A, et al. Very early treatment with infliximab in addition to methotrexate in early, poor-prognosis rheumatoid arthritis reduces magnetic resonance imaging evidence of synovitis and damage, with sustained benefit after infliximab withdrawal: results from a twelve-month randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2005;52(1):27–35.PubMedGoogle Scholar
  40. 40.
    van der Heijden JW, Dijkmans BA, Scheper RJ, Jansen G. Drug Insight: resistance to methotrexate and other disease-modifying antirheumatic drugs – from bench to bedside. Nat Clin Pract Rheumatol. 2007;3(1):26–34.PubMedGoogle Scholar
  41. 41.
    O’Dell JR, Leff R, Paulsen G, Haire C, Mallek J, Eckhoff PJ, et al. Treatment of rheumatoid arthritis with methotrexate and hydroxychloroquine, methotrexate and sulfasalazine, or a combination of the three medications: results of a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46(5):1164–70.PubMedGoogle Scholar
  42. 42.
    Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002;416(6881):603–7.PubMedGoogle Scholar
  43. 43.
    Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest. 2005;115(2):407–17.PubMedGoogle Scholar
  44. 44.
    Wozniacka A, Lesiak A, Narbutt J, McCauliffe DP, Sysa-Jedrzejowska A. Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus. 2006;15(5):268–75.PubMedGoogle Scholar
  45. 45.
    Park BC, Park SH, Paek SH, Park SY, Kwak MK, Choi HG, et al. Chloroquine-induced nitric oxide increase and cell death is dependent on cellular GSH depletion in A172 human glioblastoma cells. Toxicol Lett. 2008;178(1):52–60.PubMedGoogle Scholar
  46. 46.
    van den Borne BE, Dijkmans BA, de Rooij HH. le CS, Verweij CL. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol. 1997;24(1):55–60.PubMedGoogle Scholar
  47. 47.
    Weber SM, Levitz SM. Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. J Immunol. 2000;165(3):1534–40.PubMedGoogle Scholar
  48. 48.
    Oerlemans R, van der Heijden J, Vink J, Dijkmans BA, Kaspers GJ, Lems WF, et al. Acquired resistance to chloroquine in human CEM T cells is mediated by multidrug resistance-associated protein 1 and provokes high levels of cross-resistance to glucocorticoids. Arthritis Rheum. 2006;54(2):557–68.PubMedGoogle Scholar
  49. 49.
    Furst DE. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus. 1996;5 Suppl 1:S11–5.PubMedGoogle Scholar
  50. 50.
    The HERA Study. A randomized trial of hydroxychloroquine in early rheumatoid arthritis: the HERA Study. Am J Med. 1995;98(2):156–68.Google Scholar
  51. 51.
    Mavrikakis I, Sfikakis PP, Mavrikakis E, Rougas K, Nikolaou A, Kostopoulos C, et al. The incidence of irreversible retinal toxicity in patients treated with hydroxychloroquine: a reappraisal. Ophthalmology. 2003;110(7):1321–6.PubMedGoogle Scholar
  52. 52.
    Clark P, Casas E, Tugwell P, Medina C, Gheno C, Tenorio G, et al. Hydroxychloroquine compared with placebo in rheumatoid arthritis. A randomized controlled trial. Ann Intern Med. 1993;119(11):1067–71.PubMedGoogle Scholar
  53. 53.
    Sanders M. A review of controlled clinical trials examining the effects of antimalarial compounds and gold compounds on radiographic progression in rheumatoid arthritis. J Rheumatol. 2000;27(2):523–9.PubMedGoogle Scholar
  54. 54.
    Johnson R, Loudon JR. Hydroxychloroquine sulfate prophylaxis for pulmonary embolism for patients with low-friction arthroplasty. Clin Orthop Relat Res. 1986;211:151–3.PubMedGoogle Scholar
  55. 55.
    Wasko MC, Hubert HB, Lingala VB, Elliott JR, Luggen ME, Fries JF, et al. Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA. 2007;298(2):187–93.PubMedGoogle Scholar
  56. 56.
    Gerstein HC, Thorpe KE, Taylor DW, Haynes RB. The effectiveness of hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas – a randomized trial. Diabetes Res Clin Pract. 2002;55(3):209–19.PubMedGoogle Scholar
  57. 57.
    Avina-Zubieta JA, Galindo-Rodriguez G, Newman S, Suarez-Almazor ME, Russell AS. Long-term effectiveness of antimalarial drugs in rheumatic diseases. Ann Rheum Dis. 1998;57(10):582–7.PubMedGoogle Scholar
  58. 58.
    May K, Metcalf T, Gough A. Screening for hydroxychloroquine retinopathy. Screening should be selective. BMJ. 1998;317(7169) :1388–9.PubMedGoogle Scholar
  59. 59.
    Elman A, Gullberg R, Nilsson E, Rendahl I, Wachtmeister L. Chloroquine retinopathy in patients with rheumatoid arthritis. Scand J Rheumatol. 1976;5(3):161–6.PubMedGoogle Scholar
  60. 60.
    Rigaudiere F, Ingster-Moati I, Hache JC, Leid J, Verdet R, Haymann P, et al. Up-dated ophthalmological screening and follow-up management for long-term antimalarial treatment. J Fr Ophtalmol. 2004;27(2):191–9.PubMedGoogle Scholar
  61. 61.
    Leecharoen S, Wangkaew S, Louthrenoo W. Ocular side effects of chloroquine in patients with rheumatoid arthritis, systemic lupus erythematosus and scleroderma. J Med Assoc Thai. 2007;90(1):52–8.PubMedGoogle Scholar
  62. 62.
    Clegg DO, Dietz F, Duffy J, Willkens RF, Hurd E, Germain BF, et al. Safety and efficacy of hydroxychloroquine as maintenance therapy for rheumatoid arthritis after combination therapy with methotrexate and hydroxychloroquine. J Rheumatol. 1997;24(10):1896–902.PubMedGoogle Scholar
  63. 63.
    Seideman P, Albertioni F, Beck O, Eksborg S, Peterson C. Chloroquine reduces the bioavailability of methotrexate in patients with rheumatoid arthritis. A possible mechanism of reduced hepatotoxicity Arthritis Rheum. 1994;37(6):830–3.Google Scholar
  64. 64.
    Carmichael SJ, Beal J, Day RO, Tett SE. Combination therapy with methotrexate and hydroxychloroquine for rheumatoid arthritis increases exposure to methotrexate. J Rheumatol. 2002;29(10):2077–83.PubMedGoogle Scholar
  65. 65.
    Strand V, Cohen S, Schiff M, Weaver A, Fleischmann R, Cannon G, et al. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Leflunomide Rheumatoid Arthritis Investigators Group. Arch Intern Med. 1999;159(21):2542–50.PubMedGoogle Scholar
  66. 66.
    Bartlett RR, Schleyerbach R. Immunopharmacological profile of a novel isoxazol derivative, HWA 486, with potential antirheumatic activity – I. Disease modifying action on adjuvant arthritis of the rat. Int J Immunopharmacol. 1985;7(1):7–18.PubMedGoogle Scholar
  67. 67.
    Xu X, Williams JW, Bremer EG, Finnegan A, Chong AS. Inhibition of protein tyrosine phosphorylation in T cells by a novel immunosuppressive agent, leflunomide. J Biol Chem. 1995;270(21):12398–403.PubMedGoogle Scholar
  68. 68.
    Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-kappa B activation and gene expression. J Immunol. 1999;162(4):2095–102.PubMedGoogle Scholar
  69. 69.
    Kraan MC, Smeets TJ, van Loon MJ, Breedveld FC, Dijkmans BA, Tak PP. Differential effects of leflunomide and methotrexate on cytokine production in rheumatoid arthritis. Ann Rheum Dis. 2004;63(9):1056–61.PubMedGoogle Scholar
  70. 70.
    Fox RI. Mechanism of action of leflunomide in rheumatoid arthritis. J Rheumatol Suppl. 1998;53:20–6.PubMedGoogle Scholar
  71. 71.
    Mladenovic V, Domljan Z, Rozman B, Jajic I, Mihajlovic D, Dordevic J, et al. Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Results of a randomized, placebo-controlled, phase II study. Arthritis Rheum. 1995;38(11):1595–603.PubMedGoogle Scholar
  72. 72.
    Cohen S, Cannon GW, Schiff M, Weaver A, Fox R, Olsen N, et al. Two-year, blinded, randomized, controlled trial of treatment of active rheumatoid arthritis with leflunomide compared with methotrexate. Utilization of Leflunomide in the Treatment of Rheumatoid Arthritis Trial Investigator Group. Arthritis Rheum. 2001;44(9):1984–92.PubMedGoogle Scholar
  73. 73.
    Emery P, Breedveld FC, Lemmel EM, Kaltwasser JP, Dawes PT, Gomor B, et al. A comparison of the efficacy and safety of leflunomide and methotrexate for the treatment of rheumatoid arthritis. Rheumatology (Oxford). 2000;39(6):655–65.Google Scholar
  74. 74.
    Maddison P, Kiely P, Kirkham B, Lawson T, Moots R, Proudfoot D, et al. Leflunomide in rheumatoid arthritis: recommendations through a process of consensus. Rheumatology (Oxford). 2005;44(3):280–6.Google Scholar
  75. 75.
    Cush JJ. Safety overview of new disease-modifying antirheumatic drugs. Rheum Dis Clin North Am. 2004;30(2):237–55. v.PubMedGoogle Scholar
  76. 76.
    Chan J, Sanders DC, Du L, Pillans PI. Leflunomide-associated pancytopenia with or without methotrexate. Ann Pharmacother. 2004;38(7–8):1206–11.PubMedGoogle Scholar
  77. 77.
    Martin K, Bentaberry F, Dumoulin C, Miremont-Salame G, Haramburu F, Dehais J, et al. Peripheral neuropathy associated with leflunomide: is there a risk patient profile? Pharmacoepidemiol Drug Saf. 2007;16(1):74–8.PubMedGoogle Scholar
  78. 78.
    Andersen PA, West SG, O’Dell JR, Via CS, Claypool RG, Kotzin BL. Weekly pulse methotrexate in rheumatoid arthritis. Clinical and immunologic effects in a randomized, double-blind study. Ann Intern Med. 1985;103(4):489–96.PubMedGoogle Scholar
  79. 79.
    Thompson RN, Watts C, Edelman J, Esdaile J, Russell AS. A controlled two-centre trial of parenteral methotrexate therapy for refractory rheumatoid arthritis. J Rheumatol. 1984;11(6):760–3.PubMedGoogle Scholar
  80. 80.
    Weinblatt ME, Coblyn JS, Fox DA, Fraser PA, Holdsworth DE, Glass DN, et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med. 1985;312(13):818–22.PubMedGoogle Scholar
  81. 81.
    Williams HJ, Willkens RF, Samuelson Jr CO, Alarcon GS, Guttadauria M, Yarboro C, et al. Comparison of low-dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis. A controlled clinical trial. Arthritis Rheum. 1985;28(7):721–30.PubMedGoogle Scholar
  82. 82.
    Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M, et al. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum. 2004;50(9):2766–74.PubMedGoogle Scholar
  83. 83.
    Minaur NJ, Jefferiss C, Bhalla AK, Beresford JN. Methotrexate in the treatment of rheumatoid arthritis. I. In vitro effects on cells of the osteoblast lineage. Rheumatology (Oxford). 2002;41(7):735–40.Google Scholar
  84. 84.
    Cutolo M, Sulli A, Pizzorni C, Seriolo B, Straub RH. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis. 2001;60(8):729–35.PubMedGoogle Scholar
  85. 85.
    Ranganath VK, Furst DE. Disease-modifying antirheumatic drug use in the elderly rheumatoid arthritis patient. Clin Geriatr Med. 2005;21(3):649–69. viii.PubMedGoogle Scholar
  86. 86.
    Drosos A. Methotrexate intolerance in elderly patients with rheumatoid arthritis: what are the alternatives? Drugs Aging. 2003;20(10):723–36.PubMedGoogle Scholar
  87. 87.
    Sinnett MJ, Groff GD, Raddatz DA, Franck WA, Bertino Jr JS. Methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Rheumatol. 1989;16(6):745–8.PubMedGoogle Scholar
  88. 88.
    Nuernberg B, Koehnke R, Solsky M, Hoffman J, Furst DE. Biliary elimination of low-dose methotrexate in humans. Arthritis Rheum. 1990;33(6):898–902.PubMedGoogle Scholar
  89. 89.
    Furst DE. Clinical pharmacology of very low dose methotrexate for use in rheumatoid arthritis. J Rheumatol Suppl. 1985;12 Suppl 12:11–4.PubMedGoogle Scholar
  90. 90.
    Bressolle F, Bologna C, Kinowski JM, Arcos B, Sany J, Combe B. Total and free methotrexate pharmacokinetics in elderly patients with rheumatoid arthritis. A comparison with young patients. J Rheumatol. 1997;24(10):1903–9.PubMedGoogle Scholar
  91. 91.
    Rooney TW, Furst DE, Koehnke R, Burmeister L. Aspirin is not associated with more toxicity than other nonsteroidal antiinflammatory drugs in patients with rheumatoid arthritis treated with methotrexate. J Rheumatol. 1993;20(8):1297–302.PubMedGoogle Scholar
  92. 92.
    Haagsma CJ. Clinically important drug interactions with disease-modifying antirheumatic drugs. Drugs Aging. 1998;13(4):281–9.PubMedGoogle Scholar
  93. 93.
    Flammiger A, Maibach H. Drug dosage in the elderly: dermatological drugs. Drugs Aging. 2006;23(3):203–15.PubMedGoogle Scholar
  94. 94.
    Jeurissen ME, Boerbooms AM, van de Putte LB. Pancytopenia and methotrexate with trimethoprim-sulfamethoxazole. Ann Intern Med. 1989;111(3):261.PubMedGoogle Scholar
  95. 95.
    Ng HW, Macfarlane AW, Graham RM, Verbov JL. Near fatal drug interactions with methotrexate given for psoriasis. Br Med J (Clin Res Ed). 1987;295(6601):752–3.Google Scholar
  96. 96.
    Felson DT, Anderson JJ, Meenan RF. Use of short-term efficacy/toxicity tradeoffs to select second-line drugs in rheumatoid arthritis. A metaanalysis of published clinical trials. Arthritis Rheum. 1992;35(10):1117–25.PubMedGoogle Scholar
  97. 97.
    Furst DE. Rational use of disease-modifying antirheumatic drugs. Drugs. 1990;39(1):19–37.PubMedGoogle Scholar
  98. 98.
    Bannwarth B, Labat L, Moride Y, Schaeverbeke T. Methotrexate in rheumatoid arthritis. An update. Drugs. 1994;47(1):25–50.PubMedGoogle Scholar
  99. 99.
    Case JP. Old and new drugs used in rheumatoid arthritis: a historical perspective. Part 1: the older drugs. Am J Ther. 2001;8(2):123–43.PubMedGoogle Scholar
  100. 100.
    Alarcon GS, Lopez-Mendez A, Walter J, Boerbooms AM, Russell AS, Furst DE, et al. Radiographic evidence of disease progression in methotrexate treated and nonmethotrexate disease modifying antirheumatic drug treated rheumatoid arthritis patients: a meta-analysis. J Rheumatol. 1992;19(12):1868–73.PubMedGoogle Scholar
  101. 101.
    Wolfe F, Cathey MA. The effect of age on methotrexate efficacy and toxicity. J Rheumatol. 1991;18(7):973–7.PubMedGoogle Scholar
  102. 102.
    Rheumatoid Arthritis Clinical Trial Archive Group. The effect of age and renal function on the efficacy and toxicity of methotrexate in rheumatoid arthritis. J Rheumatol. 1995;22(2):218–23.Google Scholar
  103. 103.
    Usman AR, Yunus MB. Non-Hodgkin’s lymphoma in patients with rheumatoid arthritis treated with low dose methotrexate. J Rheumatol. 1996;23(6):1095–7.PubMedGoogle Scholar
  104. 104.
    Khanna D, Park GS, Paulus HE, Simpson KM, Elashoff D, Cohen SB, et al. Reduction of the efficacy of methotrexate by the use of folic acid: post hoc analysis from two randomized controlled studies. Arthritis Rheum. 2005;52(10):3030–8.PubMedGoogle Scholar
  105. 105.
    Poole P, Yeoman S, Caughey D. Methotrexate in older patients with rheumatoid arthritis. Br J Rheumatol. 1992;31(12):860.PubMedGoogle Scholar
  106. 106.
    Mori S, Cho I, Ichiyasu H, Sugimoto M. Asymptomatic carriage of Pneumocystis jiroveci in elderly patients with rheumatoid arthritis in Japan: a possible association between colonization and development of Pneumocystis jiroveci pneumonia during low-dose MTX therapy. Mod Rheumatol. 2008;18(3):240–6.PubMedGoogle Scholar
  107. 107.
    Nyfors A. Liver biopsies from psoriatics related to methotrexate therapy. 3. Findings in post-methotrexate liver biopsies from 160 psoriatics. Acta Pathol Microbiol Scand [A]. 1977;85(4):511–8.Google Scholar
  108. 108.
    Provenzano G. Chronic pulmonary toxicity of methotrexate and rheumatoid arthritis. Rheumatology (Oxford). 2003;42(6):802–3.Google Scholar
  109. 109.
    Cottin V, Tebib J, Massonnet B, Souquet PJ, Bernard JP. Pulmonary function in patients receiving long-term low-dose methotrexate. Chest. 1996;109(4):933–8.PubMedGoogle Scholar
  110. 110.
    Beyeler C, Jordi B, Gerber NJ, Im Hof V. Pulmonary function in rheumatoid arthritis treated with low-dose methotrexate: a longitudinal study. Br J Rheumatol. 1996;35(5):446–52.PubMedGoogle Scholar
  111. 111.
    Alarcon GS, Kremer JM, Macaluso M, Weinblatt ME, Cannon GW, Palmer WR, et al. Risk factors for methotrexate-induced lung injury in patients with rheumatoid arthritis. A multicenter, case-control study. Methotrexate-Lung Study Group. Ann Intern Med. 1997;127(5):356–64.PubMedGoogle Scholar
  112. 112.
    Engelbrecht JA, Calhoon SL, Scherrer JJ. Methotrexate pneumonitis after low-dose therapy for rheumatoid arthritis. Arthritis Rheum. 1983;26(10):1275–8.PubMedGoogle Scholar
  113. 113.
    Voulgari PV, Vartholomatos G, Kaiafas P, Bourantas KL, Drosos AA. Rheumatoid arthritis and B-cell chronic lymphocytic leukemia. Clin Exp Rheumatol. 2002;20(1):63–5.PubMedGoogle Scholar
  114. 114.
    Starkebaum G. Rheumatoid arthritis, methotrexate, and lymphoma: risk substitution, or cat and mouse with Epstein-Barr virus? J Rheumatol. 2001;28(12):2573–5.PubMedGoogle Scholar
  115. 115.
    Georgescu L, Paget SA. Lymphoma in patients with rheumatoid arthritis: what is the evidence of a link with methotrexate? Drug Saf. 1999;20(6):475–87.PubMedGoogle Scholar
  116. 116.
    Toussirot E, Roudier J. Pathophysiological links between rheumatoid arthritis and the Epstein-Barr virus: an update. Joint Bone Spine. 2007;74(5):418–26.PubMedGoogle Scholar
  117. 117.
    Svartz N. Salazopyryn, A new Sulfanilamide preparation. Acta Med Scand. 1942;110:577–98.Google Scholar
  118. 118.
    Svartz N. The treatment of rheumatic polyarthritis with acid azo compounds. Rheumatism. 1948;4:180–6.PubMedGoogle Scholar
  119. 119.
    McConkey B, Amos RS, Durham S, Forster PJ, Hubball S, Walsh L. Sulphasalazine in rheumatoid arthritis. Br Med J. 1980;280(6212):442–4.PubMedGoogle Scholar
  120. 120.
    Pullar T, Hunter JA, Capell HA. Which component of sulphasalazine is active in rheumatoid arthritis? Br Med J (Clin Res Ed). 1985;290(6481):1535–8.Google Scholar
  121. 121.
    Hoult JR. Pharmacological and biochemical actions of sulphasalazine. Drugs. 1986;32 Suppl 1:18–26.PubMedGoogle Scholar
  122. 122.
    Klotz U. Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid. Clin Pharmacokinet. 1985;10(4):285–302.PubMedGoogle Scholar
  123. 123.
    Pullar T, Hunter JA, Capell HA. Effect of acetylator phenotype on efficacy and toxicity of sulphasalazine in rheumatoid arthritis. Ann Rheum Dis. 1985;44(12):831–7.PubMedGoogle Scholar
  124. 124.
    Taggart AJ, McDermott B, Delargy M, Elborn S, Forbes J, Roberts SD, et al. The pharmacokinetics of sulphasalazine in young and elderly patients with rheumatoid arthritis. Scand J Rheumatol Suppl. 1987;64:29–36.PubMedGoogle Scholar
  125. 125.
    Kitas GD, Farr M, Waterhouse L, Bacon PA. Influence of acetylator status on sulphasalazine efficacy and toxicity in patients with rheumatoid arthritis. Scand J Rheumatol. 1992;21(5):220–5.PubMedGoogle Scholar
  126. 126.
    The Australian Multicentre Clinical Trial Group. Sulfasalazine in early rheumatoid arthritis. J Rheumatol. 1992;19(11):1672–7.Google Scholar
  127. 127.
    Hannonen P, Mottonen T, Hakola M, Oka M. Sulfasalazine in early rheumatoid arthritis. A 48-week double-blind, prospective, placebo-controlled study. Arthritis Rheum. 1993;36(11):1501–9.PubMedGoogle Scholar
  128. 128.
    Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH. Rheumatology. 4th ed. Philadelphia, PA: Mosby Elsevier; 2008.Google Scholar
  129. 129.
    Nuver-Zwart IH, van Riel PL, van de Putte LB, Gribnau FW. A double blind comparative study of sulphasalazine and hydroxychloroquine in rheumatoid arthritis: evidence of an earlier effect of sulphasalazine. Ann Rheum Dis. 1989;48(5):389–95.PubMedGoogle Scholar
  130. 130.
    Porter D, Madhok R, Hunter JA, Capell HA. Prospective trial comparing the use of sulphasalazine and auranofin as second line drugs in patients with rheumatoid arthritis. Ann Rheum Dis. 1992;51(4):461–4.PubMedGoogle Scholar
  131. 131.
    Wilkieson CA, Madhok R, Hunter JA, Capell HA. Toleration, side-effects and efficacy of sulphasalazine in rheumatoid arthritis patients of different ages. Q J Med. 1993;86(8):501–5.PubMedGoogle Scholar
  132. 132.
    Weaver A, Chatwell R, Churchill M, Kastanek L, Beyene J, Garceau R, et al. Improved gastrointestinal tolerance and patient preference of enteric-coated sulfasalazine versus uncoated sulfasalazine tablets in patients with rheumatoid arthritis. J Clin Rheumatol. 1999;5(4):193–200.PubMedGoogle Scholar
  133. 133.
    Pullar T, Hunter JA, Capell HA. Sulphasalazine in the treatment of rheumatoid arthritis: relationship of dose and serum levels to efficacy. Br J Rheumatol. 1985;24(3):269–76.PubMedGoogle Scholar
  134. 134.
    Salliot C, Gossec L, Ruyssen-Witrand A, Luc M, Duclos M, Guignard S, et al. Infections during tumour necrosis factor-alpha blocker therapy for rheumatic diseases in daily practice: a systematic retrospective study of 709 patients. Rheumatology (Oxford). 2007;46(2):327–34.Google Scholar
  135. 135.
    Ornetti P, Chevillotte H, Zerrak A, Maillefert JF. Anti-tumour necrosis factor-alpha therapy for rheumatoid and other inflammatory arthropathies: update on safety in older patients. Drugs Aging. 2006;23(11):855–60.PubMedGoogle Scholar
  136. 136.
    Genevay S, Finckh A, Ciurea A, Chamot AM, Kyburz D, Gabay C. Tolerance and effectiveness of anti-tumor necrosis factor alpha therapies in elderly patients with rheumatoid arthritis: a population-based cohort study. Arthritis Rheum. 2007;57(4):679–85.PubMedGoogle Scholar
  137. 137.
    Filippini M, Bazzani C, Zingarelli S, Figlioli T, Nuzzo M, Vinelli M, et al. Anti-TNFalpha agents in elderly patients with rheumatoid arthritis: a study of a group of 105 over sixty five years old patients. Reumatismo. 2008;60(1):41–9.PubMedGoogle Scholar
  138. 138.
    Chevillotte-Maillard H, Ornetti P, Mistrih R, Sidot C, Dupuis J, Dellas JA, et al. Survival and safety of treatment with infliximab in the elderly population. Rheumatology (Oxford). 2005;44(5):695–6.Google Scholar
  139. 139.
    Furst DE, Breedveld FC, Kalden JR, Smolen JS, Burmester GR, Sieper J, et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases. Ann Rheum Dis. 2007;66 Suppl 3:iii2–22.PubMedGoogle Scholar
  140. 140.
    Schneeweiss S, Setoguchi S, Weinblatt ME, Katz JN, Avorn J, Sax PE, et al. Anti-tumor necrosis factor alpha therapy and the risk of serious bacterial infections in elderly patients with rheumatoid arthritis. Arthritis Rheum. 2007;56(6):1754–64.PubMedGoogle Scholar
  141. 141.
    Cairns AP, Taggart AJ. Anti-tumour necrosis factor therapy for severe inflammatory arthritis: two years of experience in Northern Ireland. Ulster Med J. 2002;71(2):101–5.PubMedGoogle Scholar
  142. 142.
    Wolfe F, Michaud K. Biologic treatment of rheumatoid arthritis and the risk of malignancy: analyses from a large US observational study. Arthritis Rheum. 2007;56(9):2886–95.PubMedGoogle Scholar
  143. 143.
    Khanna D, McMahon M, Furst DE. Safety of tumour necrosis factor-alpha antagonists. Drug Saf. 2004;27(5):307–24.PubMedGoogle Scholar
  144. 144.
    Wolfe F, Michaud K. Lymphoma in rheumatoid arthritis: the effect of methotrexate and anti-tumor necrosis factor therapy in 18, 572 patients. Arthritis Rheum. 2004;50(6):1740–51.PubMedGoogle Scholar
  145. 145.
    Kaiser R. Incidence of lymphoma in patients with rheumatoid arthritis: a systematic review of the literature. Clin Lymphoma Myeloma. 2008;8(2):87–93.PubMedGoogle Scholar
  146. 146.
    Coletta AP, Clark AL, Banarjee P, Cleland JG. Clinical trials update: RENEWAL (RENAISSANCE and RECOVER) and ATTACH. Eur J Heart Fail. 2002;4(4):559–61.PubMedGoogle Scholar
  147. 147.
    Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107(25):3133–40.PubMedGoogle Scholar
  148. 148.
    Kwon HJ, Cote TR, Cuffe MS, Kramer JM, Braun MM. Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med. 2003;138(10):807–11.PubMedGoogle Scholar
  149. 149.
    Sarzi-Puttini P, Atzeni F, Doria A, Iaccarino L, Turiel M. Tumor necrosis factor-alpha, biologic agents and cardiovascular risk. Lupus. 2005;14(9):780–4.PubMedGoogle Scholar
  150. 150.
    Listing J, Strangfeld A, Kekow J, Schneider M, Kapelle A, Wassenberg S, et al. Does tumor necrosis factor alpha inhibition promote or prevent heart failure in patients with rheumatoid arthritis? Arthritis Rheum. 2008;58(3):667–77.PubMedGoogle Scholar
  151. 151.
    van de Putte LB, Atkins C, Malaise M, Sany J, Russell AS, van Riel PL, et al. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann Rheum Dis. 2004;63(5):508–16.PubMedGoogle Scholar
  152. 152.
    Humira (adalimumab) package insert. North Chicago, IL: Abbott Laboratories. 2002. 2008.Ref Type: GenericGoogle Scholar
  153. 153.
    Weinblatt ME, Schiff MH, Ruderman EM, Bingham III CO, Li J, Louie J, et al. Efficacy and safety of etanercept 50 mg twice a week in patients with rheumatoid arthritis who had a suboptimal response to etanercept 50 mg once a week: Results of a multicenter, randomized, double-blind, active drug-controlled study. Arthritis Rheum. 2008;58(7):1921–30.PubMedGoogle Scholar
  154. 154.
    Enbrel (etanercept) package insert. Thousand Oaks, CA: Immunex Corporation. 2003.Ref Type: GenericGoogle Scholar
  155. 155.
    Klotz U, Teml A, Schwab M. Clinical pharmacokinetics and use of infliximab. Clin Pharmacokinet. 2007;46(8):645–60.PubMedGoogle Scholar
  156. 156.
    Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 1998;41(9):1552–63.PubMedGoogle Scholar
  157. 157.
    St Clair EW, Wagner CL, Fasanmade AA, Wang B, Schaible T, Kavanaugh A, et al. The relationship of serum infliximab ­concentrations to clinical improvement in rheumatoid arthritis: results from ATTRACT, a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002;46(6):1451–9.PubMedGoogle Scholar
  158. 158.
    Remicade (infliximab) package insert. Malvern, PA: Centocor Inc. 2002.Ref Type: GenericGoogle Scholar
  159. 159.
    Lange U, Teichmann J, Muller-Ladner U, Strunk J. Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-alpha antibody: a prospective open-label pilot study. Rheumatology (Oxford). 2005;44(12):1546–8.Google Scholar
  160. 160.
    Takeuchi T, Tatsuki Y, Nogami Y, Ishiguro N, Tanaka Y, Yamanaka H, et al. Postmarketing surveillance of the safety profile of infliximab in 5000 Japanese patients with rheumatoid arthritis. Ann Rheum Dis. 2008;67(2):189–94.PubMedGoogle Scholar
  161. 161.
    Reynolds J, Shojania K, Marra CA. Abatacept: a novel treatment for moderate-to-severe rheumatoid arthritis. Pharmacotherapy. 2007;27(12):1693–701.PubMedGoogle Scholar
  162. 162.
    Orencia (abatacept) package insert. Princeton, NJ: Bristol-Myers Squibb Company 2006.Ref Type: GenericGoogle Scholar
  163. 163.
    Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med. 2003;349(20):1907–15.PubMedGoogle Scholar
  164. 164.
    Kremer JM, Genant HK, Moreland LW, Russell AS, Emery P, Abud-Mendoza C, et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann Intern Med. 2006;144(12):865–76.PubMedGoogle Scholar
  165. 165.
    Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 2005;353(11):1114–23.PubMedGoogle Scholar
  166. 166.
    Dinarello CA. The interleukin-1 family: 10 years of discovery. FASEB J. 1994;8(15):1314–25.PubMedGoogle Scholar
  167. 167.
    Kineret (anakinra) package insert. Thousand Oaks, CA: Amgen Manufacturing. 2001–2003. 2008.Ref Type: GenericGoogle Scholar
  168. 168.
    Yang BB, Baughman S, Sullivan JT. Pharmacokinetics of anakinra in subjects with different levels of renal function. Clin Pharmacol Ther. 2003;74(1):85–94.PubMedGoogle Scholar
  169. 169.
    Schiff MH, DiVittorio G, Tesser J, Fleischmann R, Schechtman J, Hartman S, et al. The safety of anakinra in high-risk patients with active rheumatoid arthritis: six-month observations of patients with comorbid conditions. Arthritis Rheum. 2004;50(6):1752–60.PubMedGoogle Scholar
  170. 170.
    Breedveld F, Agarwal S, Yin M, Ren S, Li NF, Shaw TM, et al. Rituximab pharmacokinetics in patients with rheumatoid arthritis: B-cell levels do not correlate with clinical response. J Clin Pharmacol. 2007;47(9):1119–28.PubMedGoogle Scholar
  171. 171.
    Tak PP. Inhibition of joint damage and improved clinical outcomes with a combination of rituximab and methotrexate in patients with early active rheumatoid arthritis who are naive to MTX: a randomised active comparator placebo-controlled trial (IMAGE). Rigby W RAea, editor. Presented at EULAR- Abstract OP-0022. 2009.Ref Type: GenericGoogle Scholar
  172. 172.
    Korhonen R, Moilanen E. Anti-CD20 antibody rituximab in the treatment of rheumatoid arthritis. Basic Clin Pharmacol Toxicol. 2010;106(1):13–21.PubMedGoogle Scholar
  173. 173.
    Furst DE. Serum Immunoglobulins and Risk of Infection: How Low Can You Go? Semin Arthritis Rheum. 2008;39(1):18–29.PubMedGoogle Scholar
  174. 174.
    Rao AV, Schmader K. Monoclonal antibodies as targeted therapy in hematologic malignancies in older adults. Am J Geriatr Pharmacother. 2007;5(3):247–62.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sogol S. Amjadi
  • Veena K. Ranganath
  • Daniel E. Furst
    • 1
    Email author
  1. 1.Division of Rheumatology, Department of MedicineUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations