Skip to main content

Microencapsulated Choroid Plexus Epithelial Cell Transplants for Repair of the Brain

  • Chapter
Book cover Therapeutic Applications of Cell Microencapsulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 670))

Abstract

The choroid plexuses (CPs) play pivotal roles in basic aspects of neural function including maintaining the extracellular milieu of the brain by actively modulating chemical exchange between the CSF and brain parenchyma, surveying the chemical and immunological status of the brain, detoxifying the brain, secreting a nutritive “cocktail” of polypeptides and participating in repair processes following trauma. Even modest changes in the CP can have far reaching effects and changes in the anatomy and physiology of the CP have been linked to several CNS diseases. It is also possible that replacing diseased or transplanting healthy CP might be useful for treating acute and chronic brain diseases. Here we describe the wide-ranging functions of the CP, alterations of these functions in aging and neurodegeneration and recent demonstrations of the therapeutic potential of transplanted microencapsulated CP for neural trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borlongan CV, Skinner SJM, Geaney M et al. Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke 2004; 35:2206–2210.

    Article  PubMed  Google Scholar 

  2. Chakrabotty S, Kitada M, Matsumoto N et al. Choroid plexus ependymal cells enhance neurite outgrowth from dorsal root ganglion neurons in vitro. J Neurocytol 2000; 10:707–717.

    Article  Google Scholar 

  3. Emerich DF, Thanos CG, Goddard M et al. Neuroprotective effects of porcine choroid plexus in a monkey model of Huntington’s disease. Neurobiology of Disease 2006; 23:471–480.

    Article  PubMed  Google Scholar 

  4. Ide C, Kitada M, Chakrabortty S et al. Grafting of choroid plexus ependymal cells promotes the growth of regenerating axons in the dorsal funiculus of rat spinal cord: a preliminary report. Exper Neurol 2001; 167:242–251.

    Article  CAS  Google Scholar 

  5. Borlongan CV, Elliott RB, Skinner SJM et al. Intraparenchymal grafts of rat choroid plexus protect against cerebral ischemia in adult rats. Neuro Report 2004; 15:1543–1547.

    CAS  Google Scholar 

  6. Borlongan CV, Skinner SJM, Geaney M et al. Neuroprotection by encapsulated choroid plexus in a rodent model of Huntington’s disease. Neuro Report 2004; 15:2521–2525.

    Google Scholar 

  7. Speake T, Whitwell C, Kajita H et al. Mechanisms of CSF-secretion by the choroid plexus. Microsc Res Tech 2001; 52:49–59.

    Article  CAS  PubMed  Google Scholar 

  8. Vorbrodt AW, Dobrogowska DH. Molecular anatomy of intercellular junctions in brain endothelia and epithelial barriers: electron microscopist’s view. Brain Res Rev 2003; 42:221–242.

    Article  CAS  PubMed  Google Scholar 

  9. Emerich DF, Vasconcellos AV, Elliott RB et al. The choroid plexus: function, pathology and therapeutic potential of its transplantation. Expert Opin Biol Ther 2004; 4:1191–1201.

    Article  CAS  PubMed  Google Scholar 

  10. Emerich DF, Skinner SJM, Borlongan CV et al. The choroid plexus in the rise, fall and repair of the brain. Bio Essays 2005; 27:262–274.

    CAS  Google Scholar 

  11. Engelhardt B, Wolburg Buchholz K, Wolburg H. Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Techniq 2001; 52:112–129.

    Article  CAS  Google Scholar 

  12. Dzieglielewska KM, Habgood MD, Saunders NR. Development of the choroid plexus. Microsc Res Tech 2001; 2:5–20.

    Google Scholar 

  13. Chodobski A, Szmydynger Chodobska J. Choroid plexus: Target for polypeptides and site of their synthesis. Microsc Res Techniq 2001; 52:65–82.

    Article  CAS  Google Scholar 

  14. Bondy CA, Werner H, Roberts CT et al. Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: Comparison with IGF-II gene expression. Mol Endocrinol 1990; 4:1386–98.

    Article  CAS  PubMed  Google Scholar 

  15. Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 2000; 59:561–574.

    CAS  PubMed  Google Scholar 

  16. Ba-Charvet NKT, Brose K, Marillat V. Slit2-Mediated chemorepulsion and collapse of developing forebrain axons. Neuron 1999; 22:463–73.

    Article  CAS  Google Scholar 

  17. Hu H. Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 1999; 23:703–11.

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto M, McCaffery P, Drager UC. Influence of the choroid plexus on cerebellar development: Analysis of retinoic acid synthesis. Brain Res Dev Brain Res 1996; 93:182–190.

    Article  CAS  PubMed  Google Scholar 

  19. Miyan JA, Nabiyouni M, Zendah M. Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol 2003; 81:317–328.

    Article  CAS  PubMed  Google Scholar 

  20. Serot JM, Béné MC, Foligue B et al. Morphological alterations of the choroid plexus in late-onset Alzheimer’s disease. Acta Neuropathol 2000; 99:105–108.

    Article  CAS  PubMed  Google Scholar 

  21. Wen GY, Wisniewski HM, Kascsak RJ. Biondi ring tangles in the choroid plexus of Alzheimer’s disease and normal aging brains: a quantitative study. Brain Res 1999; 832:40–46.

    Article  CAS  PubMed  Google Scholar 

  22. Serot JM, Béné MC, Faure GC. Choroid plexus, ageing of the brain and Alzheimer’s disease. Front Biosci 2003; 8:515–521.

    Article  Google Scholar 

  23. Shuangshoti S, Netsky MG. Human choroid plexus: morphologic and histochemical alterations with age. Am J Anat 1970; 128:73–96.

    Article  CAS  PubMed  Google Scholar 

  24. Serot JM, Béné MC, Foliguet B et al. Choroid plexus and ageing: a morphometric and ultrastructural study. Eur J Neurosci 2001; 14:794–798.

    Article  CAS  PubMed  Google Scholar 

  25. Sturrock RR. An ultrastructural study of the choroid plexus of aged mice. Anat Anz 1998; 165:379–385.

    Google Scholar 

  26. Ferrante F, Amenta F. Enzyme histochemistry of the choroid plexus in old rats. Mech Ageing Dev 1987; 41:65–72.

    Article  CAS  PubMed  Google Scholar 

  27. Miklossy J, Kraftsik R, Pillevuit O et al. Curly fiber and tangle-like inclusions in the ependyma and choroid plexus—a pathogenetic relationship with the cortical Alzheimer-type changes? J Neuropathol Exper Neurol 1998; 57:1202–1212.

    Article  CAS  Google Scholar 

  28. Cottrell DA, Blakely EL, Johnson MA et al. Cytochrome oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol Aging 2001; 22:265–272.

    Article  CAS  PubMed  Google Scholar 

  29. Preston JE. Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech 2001; 52:31–37.

    Article  CAS  PubMed  Google Scholar 

  30. Serot JM, Christmann D, Dubost T et al. Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J Neurol Neurosurg Psychiat 1997; 63:506–508.

    Article  CAS  PubMed  Google Scholar 

  31. Schippling S, Kontush A, Arlt S et al. Increased lipoprotein oxidation in Alzheimer’s disease. Free Rad Biol Med 2000; 28:351–360.

    Article  CAS  PubMed  Google Scholar 

  32. Tohgi H, Abe T, Nakanishi M et al. Concentrations of a-tocopherol and its quinone derivative in cerebrospinal fluid from patients with vascular dementia of the Binswanger type and Alzheimer type dementia. Neurosci Lett 1994; 174:73–76.

    Article  CAS  PubMed  Google Scholar 

  33. Ikeda T, Furukawa Y, Mashimoto S et al. Vitamin B12 levels in serum and cerebrospinal fluid of people with Alzheimer’s disease. Acta Psychiatr Scand 1990; 82:327–329.

    Article  CAS  PubMed  Google Scholar 

  34. Selley ML, Close DR, Stern SE. The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol Aging 2002; 232:383–388.

    Article  Google Scholar 

  35. Serot JM, Christmann D, Dubost T et al. CSF-folate levels are decreased in late-onset AD patients. J Neural Transm 2001; 108:93–99.

    Article  CAS  PubMed  Google Scholar 

  36. Thanos CG, Schneider PA, Nintz BE et al. The in vitro expression and secretion of vascular endothelial growth factor from free and alginate-encapsulated choroid plexus epithelium. Tissue Engineering 2007; 13:747–756.

    Article  CAS  PubMed  Google Scholar 

  37. Peraldi-Roux S, Nguyen-Than Dao B, Hirn M et al. Choroidal ependymocytes in culture: expression of polarity and function. Int J Dev Neurosci 1990; 8:575–588.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao FC. Four patterns of laminin-immunoreactive structure in developing rat brain. Brain Res Dev Brain Res 1990; 55:191–202.

    Article  Google Scholar 

  39. Thanos CG, Bintz BE, Bell WJ et al. Intraperitoneal stability of alginate-polyornithine microcapsules in rats: an FTIR and SEM analysis. Biomaterials 2006; 27:3570–3579.

    CAS  PubMed  Google Scholar 

  40. Thanos CG, Bintz BE, Emerich DF. Stability of alginate-polyornithine microcapsules is profoundly dependent on the site of transplantation. J Biomed Mater Res A 2007; 81:1–11.

    CAS  PubMed  Google Scholar 

  41. Emerich DF, Thanos CG. In vitro culture duration does not impact the ability of encapsulated choroid plexus transplants to prevent neurological deficits in excitotoxin-lesioned rats. Cell Transplantation 2006; 15:595–602.

    Article  PubMed  Google Scholar 

  42. Emerich DF, Schneider P, Bintz BE et al. Aging reduces the neuroprotective capacity, VEGF secretion and metabolic activity of choroid plexus epithelial cells. Cell Transplantation (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Thanos, C.G., Bintz, B., Emerich, D.F. (2010). Microencapsulated Choroid Plexus Epithelial Cell Transplants for Repair of the Brain. In: Pedraz, J.L., Orive, G. (eds) Therapeutic Applications of Cell Microencapsulation. Advances in Experimental Medicine and Biology, vol 670. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5786-3_8

Download citation

Publish with us

Policies and ethics