Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 670))

Abstract

The field of cell encapsulation is advancing rapidly. This cell-based technology permits the local and long-term delivery of a desired therapeutic product reducing or even avoiding the need of immunosuppressant drugs. The choice of a suitable material preserving the viability and functionality of enclosed cells becomes fundamental if a therapeutic aim is intended. Alginate, which is by far the most frequently used biomaterial in the field of cell microencapsulation, has been demonstrated to be probably the best polymer for this purpose due to its biocompatibility, easy manipulation, gel forming capacity and in vivo performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karp JM, Langer R. Development and therapeutic applications of advanced biomaterials. Curr Opin Biotechnol 2007; 18(5):454–9.

    CAS  Google Scholar 

  2. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5(3):161–71.

    Article  CAS  PubMed  Google Scholar 

  3. Zisch AH, Lutolf MP, Ehrbar M et al. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 2003; 17(15):2260–2.

    CAS  PubMed  Google Scholar 

  4. Stayton PS, Shimoboji T, Long C et al. Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 1995; 378(6556):472–4.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson DG, Peng W, Akinc A et al. A polymer library approach to suicide gene therapy for cancer. Proc Natl Acad Sci USA 2004; 101(45):16028–33.

    Article  CAS  PubMed  Google Scholar 

  6. Bellin I, Kelch S, Langer R et al. Polymeric triple-shape materials. Proc Natl Acad Sci USA 2006; 103(48):18043–7.

    Article  CAS  PubMed  Google Scholar 

  7. Grosskinsky U. Biomaterial regulations for tissue engineering. Desalination 2006; 199(1–3):265–7.

    Article  CAS  Google Scholar 

  8. Schmidt JJ, Rowley J, Kong HJ. Hydrogels used for cell-based drug delivery. J Biomed Mater Res A 2008; 87(4):1113–22.

    PubMed  Google Scholar 

  9. De Vos P, Faas MM, Strand B et al. Alginate-based microcapsules for immunoisolation of pancreaticislets. Biomaterials 2006; 27(32):5603–17.

    Article  PubMed  CAS  Google Scholar 

  10. Weber LM, Hayda KN, Haskins K et al. The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 2007; 28(19):3004–11.

    Article  CAS  PubMed  Google Scholar 

  11. Mann BK, Gobin AS, Tsai AT et al. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 2001; 22(22):3045–51.

    Article  CAS  PubMed  Google Scholar 

  12. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  13. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210(4472):908–10.

    Article  CAS  PubMed  Google Scholar 

  14. Zielinski BA, Aebischer P. Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 1994; 15(13):1049–56.

    Article  CAS  PubMed  Google Scholar 

  15. Sakai S, Kawabata K, Ono T et al. Development of mammalian cell-enclosing subsieve-size agarose capsules (<100 micron) for cell therapy. Biomaterials 2005; 26(23):4786–92.

    Article  CAS  PubMed  Google Scholar 

  16. Khademhosseini A, Eng G, Yeh J et al. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A 2006; 9(3):522–32.

    Google Scholar 

  17. Cruise GM, Hegre OD, Lamberti FV et al. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant 1999; 8(3):293–306.

    CAS  PubMed  Google Scholar 

  18. Mokrý J, Karbanová J, Lukás J et al. Biocompatibility of HEMA copolymers designed for treatment of CNS diseases with polymer-encapsulated cells. Biotechnol Prog 2000; 16(5):897–904.

    Article  PubMed  CAS  Google Scholar 

  19. Kessler L, Pinget M, Aprahamian M et al. In vitro and in vivo studies of the properties of an artificial membrane for pancreatic islet encapsulation. Horm Metab Res 1991; 23(7):312–7.

    Article  CAS  PubMed  Google Scholar 

  20. Angelova N, Hunkeler D. Rationalizing the design of polymeric biomaterials. Trends Biotechnol 1999; 17(10):409–21.

    Article  CAS  PubMed  Google Scholar 

  21. Sikorski P, Mo F, Skjåk-Braek G et al. Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. Biomacromolecules 2007; 8(7):2098–103.

    Article  CAS  PubMed  Google Scholar 

  22. Braccini I, Pérez S. Molecular basis of C(2+)-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules 2001; 2(4):1089–96.

    Article  CAS  PubMed  Google Scholar 

  23. Donati I, Holtan S, Mørch YA et al. New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 2005; 6(2):1031–40.

    Article  CAS  PubMed  Google Scholar 

  24. Mørch YA, Donati I, Strand BL et al. Effect of Ca2+, Ba2+ and Sr2+ on alginate microbeads. Biomacromolecules 2006; 7(5):1471–80.

    Article  PubMed  CAS  Google Scholar 

  25. Zimmermann H, Shirley SG, Zimmermann U. Alginate-based encapsulation of cells: past, present and future. Curr Diab Rep 2007; 7(4):314–20.

    Article  CAS  PubMed  Google Scholar 

  26. William DF. Summary and definitions. Progress in biomedical engineering: definition in biomaterials (4). Amsterdam: Elsevier Science Publisher BV, 1987; 66–71.

    Google Scholar 

  27. Orive G, De Castro M, Ponce S et al. Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Mol Ther 2005; 12(2):283–9.

    Article  CAS  PubMed  Google Scholar 

  28. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008; 20(2):86–100.

    Article  CAS  PubMed  Google Scholar 

  29. Luttikhuizen DT, Harmsen MC, Van Luyn MJ. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng 2006; 12(7):1955–70.

    Article  CAS  PubMed  Google Scholar 

  30. Horcher A, Zekorn T, Siebers U et al. Transplantation of microencapsulated islets in rats: evidence for induction of fibrotic overgrowth by islet alloantigens released from microcapsules. Transplant Proc 1994; 26(2):784–6.

    CAS  PubMed  Google Scholar 

  31. King A, Andersson A, Sandler S. Cytokine-induced functional suppression of microencapsulated rat pancreatic islets in vitro. Transplantation 2000; 70(2):380–3.

    Article  CAS  PubMed  Google Scholar 

  32. Robitaille R, Dusseault J, Henley N et al. Inflammatory response to peritoneal implantation of alginate-poly-L-lysine microcapsules. Biomaterials 2005; 26(19):4119–27.

    Article  CAS  PubMed  Google Scholar 

  33. Zdolsek J, Eaton JW, Tang L. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans. J Transl Med 2007; 5:31.

    Article  PubMed  CAS  Google Scholar 

  34. Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci USA 1998; 95(15):8841–6.

    Article  CAS  PubMed  Google Scholar 

  35. Keegan AD. IL-4. In: Oppenheim JJ, Feldman M, eds. Cytokine reference, Academic Press, San Diego, CA 2001.

    Google Scholar 

  36. De Vos P, van Hoogmoed CG, de Haan BJ et al. Tissue responses against immunoisolating alginate-PLL capsules in the immediate posttransplant period. J Biomed Mater Res 2002; 62(3):430–7.

    Article  PubMed  CAS  Google Scholar 

  37. Desai TA. Microfabrication technology for pancreatic cell encapsulation. Expert Opin Biol Ther 2002; 2(6):633–46.

    Article  CAS  PubMed  Google Scholar 

  38. Uludag H, De Vos P, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 2000; 42(1–2):29–64.

    Article  CAS  PubMed  Google Scholar 

  39. Duvivier-Kali VF, Omer A, Parent RJ et al. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 2001; 50(8):1698–705.

    Article  CAS  PubMed  Google Scholar 

  40. King A, Sandler S, Andersson A. The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J Biomed Mater Res 2001; 57(3):374–83.

    Article  CAS  PubMed  Google Scholar 

  41. King A, Andersson A, Strand BL et al. The role of capsule composition and biologic responses in the function of transplanted microencapsulated islets of Langerhans. Transplantation 2003; 76(2):275–9.

    Article  PubMed  Google Scholar 

  42. Anderson JM. Multinucleated giant cells. Curr Opin Hematol 2000; 7(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 2004; 6:41–75.

    Article  CAS  PubMed  Google Scholar 

  44. Orive G, Carcaboso AM, Hernández RM et al. Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules 2005; 6(2):927–31.

    Article  CAS  PubMed  Google Scholar 

  45. Zimmermann U, Thürmer F, Jork A et al. A novel class of amitogenic alginate microcapsules for long-term immunoisolated transplantation. Ann N Y Acad Sci 2001; 944:199–215.

    Article  CAS  PubMed  Google Scholar 

  46. Leinfelder U, Brunnenmeier F, Cramer H et al. A highly sensitive cell assay for validation of purification regimes of alginates. Biomaterials 2003; 24(23):4161–72.

    Article  CAS  PubMed  Google Scholar 

  47. Zimmermann H, Zimmermann D, Reuss R et al. Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 2005; 16(6):491–501.

    Article  CAS  PubMed  Google Scholar 

  48. Pedersen SS, Espersen F, Høiby N et al. Purification, characterization and immunological cross-reactivity of alginates produced by mucoid Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 1989; 27(4):691–9.

    CAS  PubMed  Google Scholar 

  49. Dusseault J, Tam SK, Ménard M et al. Evaluation of alginate purification methods: effect on polyphenol, endotoxin and protein contamination. J Biomed Mater Res A 2006; 76(2):243–51.

    PubMed  Google Scholar 

  50. De Vos P, De Haan BJ, Wolters GH et al. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 1997; 40(3):262–70.

    Article  PubMed  Google Scholar 

  51. Prokop A, Wang TG. Purification of polymers used for fabrication of an immunoisolation barrier. Ann N Y Acad Sci 1997; 831:223–31.

    Article  CAS  PubMed  Google Scholar 

  52. Klöck G, Frank H, Houben R et al. Production of purified alginates suitable for use in immunoisolated transplantation. Appl Microbiol Biotechnol 1994; 40(5):638–43.

    Article  PubMed  Google Scholar 

  53. Tam SK, Dusseault J, Polizu S et al. Impact of residual contamination on the biofunctional properties of purified alginates used for cell encapsulation. Biomaterials 2006; 27(8):1296–305.

    Article  CAS  PubMed  Google Scholar 

  54. Orive G, Ponce S, Hernández RM et al. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 2002; 23(18):3825–31.

    Article  CAS  PubMed  Google Scholar 

  55. Murua A, Portero A, Orive G et al. Cell microencapsulation technology: towards clinical application. J Control Release 2008; 132(2):76–83.

    Article  CAS  PubMed  Google Scholar 

  56. Blasi P, Giovagnoli S, Schoubben A et al. Preparation and in vitro and in vivo characterization of composite microcapsules for cell encapsulation. Int J Pharm 2006; 324(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  57. Figliuzzi M, Plati T, Cornolti R et al. Biocompatibility and function of microencapsulated pancreatic islets. Acta Biomater 2006; 2(2):221–7.

    Article  PubMed  Google Scholar 

  58. De Vos P, Hoogmoed CG, Busscher HJ. Chemistry and biocompatibility of alginate-PLL capsules for immunoprotection of mammalian cells. J Biomed Mater Res 2002; 60(2):252–9.

    Article  PubMed  CAS  Google Scholar 

  59. Leinfelder U, Brunnenmeier F, Cramer H et al. A highly sensitive cell assay for validation of purification regimes of alginates. Biomaterials 2003; 24(23):4161–72.

    Article  CAS  PubMed  Google Scholar 

  60. Friedland JC, Lee MH, Boettiger D. Mechanically Activated Integrin Switch Controls a5b1 Function. Science 2009; 323:642–4.

    Article  CAS  PubMed  Google Scholar 

  61. Genes NG, Rowley JA, Mooney DJ et al. Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch Biochem Biophys 2004; 422(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  62. Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 2002; 60(2):217–23.

    Article  CAS  PubMed  Google Scholar 

  63. Draget KI, Skjåk-Braek G, Smidsrød O. Alginate based new materials. Int J Biol Macromol 1997; 21(1–2):47–55.

    Article  CAS  PubMed  Google Scholar 

  64. Martinsen A, Skjåk-Bræk G, Smidsrød O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 1989; 33(1):79–89.

    Article  CAS  PubMed  Google Scholar 

  65. Drury JL, Dennis RG, Mooney DJ. The tensile properties of alginate hydrogels. Biomaterials 2004; 25(16):3187–99.

    Article  CAS  PubMed  Google Scholar 

  66. Smidsrød O. Molecular basis for some physical properties of alginates in the gel state. Faraday Discuss Chem Soc 1974; 57:263–74.

    Article  Google Scholar 

  67. Strand BL, Mørch YA, Syvertsen KR et al. Microcapsules made by enzymatically tailored alginate. J Biomed Mater Res A 2003; 64(3):540–50.

    Article  PubMed  CAS  Google Scholar 

  68. Martinsen A, Skjåk-Braek G, Smidsrød O et al. Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. Carbohydrate Polymers 1991; 15:171–93.

    Article  CAS  Google Scholar 

  69. Mørch YA, Holtan S, Donati I et al. Mechanical properties of C-5 epimerized alginates. Biomacromolecules 2008; 9(9):2360–8.

    Article  PubMed  CAS  Google Scholar 

  70. Mørch YA, Donati I, Strand BL et al. Molecular engineering as an approach to design new functional properties of alginate. Biomacromolecules 2007; 8(9):2809–14.

    Article  PubMed  CAS  Google Scholar 

  71. Kong HJ, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 2003; 24(22):4023–9.

    Article  CAS  PubMed  Google Scholar 

  72. Kong HY, Lee KY, Mooney DJ. Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer 2002; 43(23):6239–46.

    Article  CAS  Google Scholar 

  73. Thu B, Bruheim P, Espevik T et al. Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials 1996; 17(10):1031–40.

    Article  CAS  PubMed  Google Scholar 

  74. Omer A, Duvivier-Kali VF, Trivedi N et al. Survival and maturation of microencapsulated porcine neonatal pancreatic cell clusters transplanted into immunocompetent diabetic mice. Diabetes 2003; 52(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  75. Benzoni E, Torre ML, Faustini M et al. Transient transfection of porcine granulosa cells after 3D culture in barium alginate capsules. Int J Immunopathol Pharmacol 2005; 18(4):677–82.

    CAS  PubMed  Google Scholar 

  76. Darrabie MD, Kendall WF, Opara EC. Effect of alginate composition and gelling cation on microbead swelling. J Microencapsul 2006; 23(6):613–21.

    Article  CAS  PubMed  Google Scholar 

  77. Zimmermann U, Mimietz S, Zimmermann H et al. Hydrogel-based non-autologous cell and tissue therapy. Biotechniques 2000; 29(3):564–72.

    CAS  PubMed  Google Scholar 

  78. Zimmermann H, Wählisch F, Baier C et al. Physical and biological properties of barium cross-linked alginate membranes. Biomaterials 2007; 28(7):1327–45.

    Article  CAS  PubMed  Google Scholar 

  79. Thu B, Gåserød O, Paus D et al. Inhomogeneous alginate gel spheres: an assessment of the polymer gradients by synchrotron radiation-induced X-ray emission, magnetic resonance microimaging and mathematical modeling. Biopolymers 2000; 53(1):60–71.

    Article  CAS  PubMed  Google Scholar 

  80. Zimmermann H, Hillgärtner M, Manz B et al. Fabrication of homogeneously cross-linked, functional alginate microcapsules validated by NMR-, CLSM-and AFM-imaging. Biomaterials 2003; 24(12):2083–96.

    Article  CAS  PubMed  Google Scholar 

  81. Strand BL, Mørch YA, Espevik T et al. Visualization of alginate-poly-L-lysine-alginate microcapsules by confocal laser scanning microscopy. Biotechnol Bioeng 2003; 82(4):386–94.

    Article  CAS  PubMed  Google Scholar 

  82. Tam SK, Dusseault J, Polizu S et al. Physicochemical model of alginate-poly-L-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS and ToF-SIMS. Biomaterials 2005; 26(34):6950–61.

    Article  CAS  PubMed  Google Scholar 

  83. Wang X, Wang W, Ma J et al. Proliferation and differentiation of mouse embryonic stem cells in APA microcapsule: A model for studying the interaction between stem cells and their niche. Biotechnol Prog 2006; 22(3):791–800.

    Article  CAS  PubMed  Google Scholar 

  84. Thanos CG, Calafiore R, Basta G et al. Formulating the alginate-polyornithine biocapsule for prolonged stability: evaluation of composition and manufacturing technique. J Biomed Mater Res A 2007; 83(1):216–24.

    CAS  PubMed  Google Scholar 

  85. Baruch L, Machluf M. Alginate-chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability. Biopolymers 2006; 82(6):570–9.

    Article  CAS  PubMed  Google Scholar 

  86. Orive G, Bartkowiak A, Lisiecki S et al. Biocompatible oligochitosans as cationic modifiers of alginate/Ca microcapsules. J Biomed Mater Res B Appl Biomater 2005; 74(1):429–39.

    CAS  PubMed  Google Scholar 

  87. Marsich E, Borgogna M, Donati I et al. Alginate/lactose-modified chitosan hydrogels: a bioactive biomaterial for chondrocyte encapsulation. J Biomed Mater Res A 2008; 84(2):364–76.

    PubMed  Google Scholar 

  88. Donati I, Haug IJ, Scarpa T et al. Synergistic effects in semidilute mixed solutions of alginate and lactose-modified chitosan (chitlac). Biomacromolecules 2007; 8(3):957–62.

    Article  CAS  PubMed  Google Scholar 

  89. B. Baroli, Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering and cell encapsulation applications. J Chem Technol Biotechnol 2006; 81:491–9.

    Article  CAS  Google Scholar 

  90. Darrabie MD, Kendall WF Jr, Opara EC. Characteristics of Poly-L-Ornithine-coated alginate microcapsules. Biomaterials 2005; 26(34):6846–52.

    Article  CAS  PubMed  Google Scholar 

  91. Kizilel S, Garfinkel M, Opara E. The bioartificial pancreas: progress and challenges. Diabetes Technol Ther 2005; 7(6):968–85.

    Article  CAS  PubMed  Google Scholar 

  92. Calafiore R, Basta G, Luca G et al. Grafts of microencapsulated pancreatic islet cells for the therapy of diabetes mellitus in non-immunosuppressed animals. Biotechnol Appl Biochem 2004; 39(Pt 2):159–64.

    Article  CAS  PubMed  Google Scholar 

  93. Calafiore R, Basta G, Luca G et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 2006; 29(1):137–8.

    Article  PubMed  Google Scholar 

  94. Inaki Y, Tohnai N, Miyabayashi K et al. Isopoly-L-ornithine derivative as nucleic acid model. Nucleic Acids Symp Ser 1997; (37):25–6.

    CAS  PubMed  Google Scholar 

  95. Orive G, Tam SK, Pedraz JL et al. Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials 2006; 27(20):3691–700.

    Article  CAS  PubMed  Google Scholar 

  96. Darquy S, Pueyo ME, Capron F et al. Complement activation by alginate-polylysine microcapsules used for islet transplantation. Artif Organs 1994; 18(12):898–903.

    Article  CAS  PubMed  Google Scholar 

  97. Pueyo ME, Darquy S, Capron F et al. In vitro activation of human macrophages by alginate-polylysine microcapsules. J Biomater Sci Polym Ed 1993; 5(3):197–203.

    Article  CAS  PubMed  Google Scholar 

  98. Juste S, Lessard M, Henley N et al. Effect of poly-L-lysine coating on macrophage activation by alginate-based microcapsules: assessment using a new in vitro method. J Biomed Mater Res A 2005; 72(4):389–98.

    PubMed  Google Scholar 

  99. Zimmermann H, Hillgärtner M, Manz B et al. Fabrication of homogeneously cross-linked, functional alginate microcapsules validated by NMR-, CLSM-and AFM-imaging. Biomaterials 2003; 24(12):2083–96.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang H, Sun L, Wang W et al. Quantitative analysis of fibrosis formation on the microcapsule surface with the use of picro-sirius red staining, polarized light microscopy and digital image analysis, J Biomed Mater Res 2005; 76:120–5.

    Google Scholar 

  101. Van Hoogmoed CG, Busscher HJ, de Vos P. Fourier transform infrared spectroscopy studies of alginate-PLL capsules with varying compositions. J Biomed Mater Res A 2003; 67(1):172–8.

    Article  PubMed  CAS  Google Scholar 

  102. de Vos P, de Haan BJ, Kamps JA et al. Zeta-potentials of alginate-PLL capsules: a predictive measure for biocompatibility? J Biomed Mater Res A 2007; 80(4):813–9.

    PubMed  Google Scholar 

  103. Ponce S, Orive G, Hernández R et al. Chemistry and the biological response against immunoisolating alginate-polycation capsules of different composition. Biomaterials 2006; 27(28):4831–9.

    Article  CAS  PubMed  Google Scholar 

  104. De Vos P, van Hoogmoed CG, van Zanten J et al. Long-term biocompatibility, chemistry and function of microencapsulated pancreatic islets. Biomaterials 2003; 24(2):305–12.

    Article  PubMed  Google Scholar 

  105. Tam SK, de Haan BJ, Faas MM et al. Adsorption of human immunoglobulin to implantable alginate-poly-L-lysine microcapsules: Effect of microcapsule composition. J Biomed Mater Res A 2008, in press.

    Google Scholar 

  106. Li HR. Materials for immunoisolated cell transplantation. Adv Drug Del Rev 1998; 33:87–109.

    Article  Google Scholar 

  107. Sawhney AS, Hubbell JA. Poly (ethylene oxide)-graft-poly l-lysine copolymers to enhance the biocompatibility of poly l-lysine-alginate microcapsules membranes. Biomaterials 1992; 13:863–870.

    Article  CAS  PubMed  Google Scholar 

  108. De Castro M, Orive G, Hernández RM et al. Biocompatibility and in vivo evaluation of oligochitosans as cationic modifiers of alginate/Ca microcapsules. J Biomed Mater Res A 2009, in press.

    Google Scholar 

  109. Sawhney AS, Pathak CP, Hubbell JA. Interfacial photopolymerization of poly(ethylene glycol)-based hydrogels upon alginate-poly(l-lysine) microcapsules for enhanced biocompatibility. Biomaterials 1993; 14(13):1008–16.

    Article  CAS  PubMed  Google Scholar 

  110. Xu Y, Takai M, Ishihara K. Suppression of Protein Adsorption on a Charged Phospholipid Polymer Interface. Biomacromolecules 2009; 10(2):267–74.

    Article  CAS  PubMed  Google Scholar 

  111. Goto Y, Matsuno R, Konno T et al. Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins. Biomacromolecules 2008; 9(3):828–33.

    Article  CAS  PubMed  Google Scholar 

  112. Holland NB, Qiu Y, Ruegsegger M et al. Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 1998; 392(6678):799–801.

    Article  CAS  PubMed  Google Scholar 

  113. Rokstad AM, Donati I, Borgogna M et al. Cell-compatible covalently reinforced beads obtained from a chemoenzymatically engineered alginate. Biomaterials 2006; 27(27):4726–37.

    Article  CAS  PubMed  Google Scholar 

  114. Sakai S, Hashimoto I, Ogushi Y et al. Peroxidase-catalyzed cell encapsulation in subsieve-size capsules of alginate with phenol moieties in water-immiscible fluid dissolving H2O2. Biomacromolecules 2007; 8(8):2622–6.

    Article  CAS  PubMed  Google Scholar 

  115. Sakai S, Kawakami K. Both ionically and enzymatically crosslinkable alginate-tyramine conjugate as materials for cell encapsulation. J Biomed Mater Res A 2008; 85(2):345–51.

    PubMed  Google Scholar 

  116. Dusseault J, Leblond FA, Robitaille R et al. Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers. Biomaterials 2005; 26(13):1515–22.

    Article  CAS  PubMed  Google Scholar 

  117. Shen F, Mazumder MA, Burke NA et al. Mechanically enhanced microcapsules for cellular gene therapy. J Biomed Mater Res B Appl Biomater 2008, in press.

    Google Scholar 

  118. Dusseault J, Langlois G, Meunier MC et al. The effect of covalent cross-links between the membrane components of microcapsules on the dissemination of encapsulated malignant cells. Biomaterials 2008; 29(7):917–24.

    Article  CAS  PubMed  Google Scholar 

  119. Sands RW, Mooney DJ. Polymers to direct cell fate by controlling the microenvironment. Curr Opin Biotechnol 2007; 18(5):448–53.

    Article  CAS  PubMed  Google Scholar 

  120. Yamada KM. Adhesive recognition sequences. J Biol Chem 1991; 266(20):12809–12.

    CAS  PubMed  Google Scholar 

  121. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996; 12:697–715.

    Article  CAS  PubMed  Google Scholar 

  122. Pinkse GG, Bouwman WP, Jiawan-Lalai R et al. Integrin signaling via RGD peptides and anti-beta1 antibodies confers resistance to apoptosis in islets of Langerhans. Diabetes 2006; 55(2):312–7.

    Article  CAS  PubMed  Google Scholar 

  123. Chan G, Mooney DJ. New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 2008; 26(7):382–92.

    Article  CAS  PubMed  Google Scholar 

  124. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  125. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6(8):623–33.

    Article  CAS  PubMed  Google Scholar 

  126. Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 2002; 60(2):217–23.

    Article  CAS  PubMed  Google Scholar 

  127. Boontheekul T, Kong HJ, Hsiong SX et al. Quantifying the relation between bond number and myoblast proliferation. Faraday Discuss 2008; 139:53–70; discussion 105–28, 419–20.

    Article  CAS  PubMed  Google Scholar 

  128. Comisar WA, Kazmers NH, Mooney DJ et al. Engineering RGD nanopatterned hydrogels to control preosteoblast behavior: a combined computational and experimental approach. Biomaterials 2007; 28(30):4409–17.

    Article  CAS  PubMed  Google Scholar 

  129. Kong HJ, Boontheekul T, Mooney DJ. Quantifying the relation between adhesion ligand-receptor bond formation and cell phenotype. Proc Natl Acad Sci USA 2006; 103(49):18534–9.

    Article  CAS  PubMed  Google Scholar 

  130. Huebsch ND, Mooney DJ. Fluorescent resonance energy transfer: A tool for probing molecular cell-biomaterial interactions in three dimensions. Biomaterials 2007; 28(15):2424–37.

    Article  CAS  PubMed  Google Scholar 

  131. Hsiong SX, Huebsch N, Fischbach C et al. Integrin-adhesion ligand bond formation of preosteoblasts and stem cells in three-dimensional RGD presenting matrices. Biomacromolecules 2008; 9(7):1843–51.

    Article  CAS  PubMed  Google Scholar 

  132. Orive G, de Castro M, Kong J et al. Bioactive cell-hydrogel microcapsules for cell-based drug delivery. J Control Rel 2009, in press.

    Google Scholar 

  133. Silva EA, Mooney DJ. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost 2007; 5(3):590–8.

    Article  CAS  PubMed  Google Scholar 

  134. Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 2005; 26(15):2455–65.

    Article  CAS  PubMed  Google Scholar 

  135. Nuttelman CR, Rice MA, Rydholm AE et al. Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Progress in Polymer Science 2008; 33(2):167–79.

    Article  CAS  PubMed  Google Scholar 

  136. Bae KH, Yoon JJ, Park TG. Fabrication of hyaluronic acid hydrogel beads for cell encapsulation. Biotechnol Prog 2006; 22(1):297–302.

    Article  CAS  PubMed  Google Scholar 

  137. Khademhosseini A, Eng G, Yeh J et al. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A 2006; 79(3):522–32.

    PubMed  Google Scholar 

  138. Weber LM, He J, Bradley B et al. PEGbased hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Acta Biomater 2006; 2:1–8.

    Article  PubMed  Google Scholar 

  139. Cruise GM, Hegre OD, Lamberti FV et al. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant 1999; 8:293–306.

    CAS  PubMed  Google Scholar 

  140. Sawhney AS, Pathak CP, Hubbell JA. Modification of Islet of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings via interfacial photopolymerization. Biotechnol Bioeng 1994; 44:383–6.

    Article  CAS  PubMed  Google Scholar 

  141. Cruise GM, Hegre OD, Scharp DS et al. A sensitivity study of the key parameters in the interfacial photopolymerization of poly(ethylene glycol) diacrylate upon porcine islets. Biotechnol Bioeng 1998; 57:655–65.

    Article  CAS  PubMed  Google Scholar 

  142. Cruise GM, Scharp DS, Hubbell JA. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 1998; 19:1287–1294.

    Article  CAS  PubMed  Google Scholar 

  143. Bikram M, Fouletier-Dilling C, Hipp JA et al. Endochondral bone formation from hydrogel carriers loaded with BMP2-transduced cells. Ann Biomed Eng 2007; 35:796–807.

    Article  PubMed  Google Scholar 

  144. Benoit DS, Schwartz MP, Durney AR et al. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 2008; 7(10):816–23.

    Article  CAS  PubMed  Google Scholar 

  145. Rice MA, Sanchez-Adams J, Anseth KS. Exogenously triggered, enzymatic degradation of photopolymerized hydrogels with polycaprolactone subunits: experimenta observation and modeling of mass loss behaviour. Biomacromolecules 2006; 7(6):1968–75.

    Article  CAS  PubMed  Google Scholar 

  146. Salinas CN, Cole BB, Kasko AM et al. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)—arginine—glycine—aspartic acid—serine-thiol— methacrylate mixedmode networks. Tissue Eng 2007; 13:1025–34.

    Article  CAS  PubMed  Google Scholar 

  147. Hui TY, Cheung KM, Cheung WL et al. In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 2008; 29(22):3201–12.

    Article  CAS  PubMed  Google Scholar 

  148. Chan BP, Hui TY, Yeung CW et al. Self-assembled collagen—human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials 2007; 28(31):4652–66.

    Article  CAS  PubMed  Google Scholar 

  149. Mokrý J, Karbanová J, Lukás J et al. Biocompatibility of HEMA copolymers designed for treatment of CNS diseases with polymer-encapsulated cells. Biotechnol Prog 2000; 16(5):897–904.

    Article  PubMed  CAS  Google Scholar 

  150. Chae SY, Lee M, Kim SW et al. Protection of insulinsecreting cells from nitric oxide induced cellular damage by crosslinked hemoglobin. Biomaterials 2004; 25:843–50.

    Article  CAS  PubMed  Google Scholar 

  151. Wu JX, Tai J, Cheung SC et al. Assessment of the protective effect of uncoated alginate microspheres. Transplant Proc 1997; 29:2146–7.

    Article  CAS  PubMed  Google Scholar 

  152. Goosen MFA, Oshea GM, Gharapetian HM et al. Optimization of microencapsulation parameters— Semipermeable microcapsules as a bioartificial pancreas. Biotechnol Bioeng 1985; 27:146–50.

    Article  CAS  PubMed  Google Scholar 

  153. Wiegand F, Kroncke KD, Kolbbachofen V. Macrophage-generated nitric-oxide as cytotoxic factor in destruction of alginate-encapsulated islets—Protection of arginine analogs and/or coencapsulated erythrocytes. Transplantation 1993; 56:1206–12.

    Article  CAS  PubMed  Google Scholar 

  154. Bloch J, Bachoud-Levi AC, Deglon N et al. Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: Results of a phase I study. Human Gene Ther 2004; 15:968–75.

    Article  CAS  Google Scholar 

  155. Soonshiong P, Heintz RE, Merideth N et al. Insulin independence in a type-1 diabetic patient after encapsulated islet transplantation. Lancet 1994; 343:950–1.

    Article  CAS  Google Scholar 

  156. Keshaw H, Forbes A, Day RM. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials 2005; 26:4171–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Santos, E., Zarate, J., Orive, G., Hernández, R.M., Pedraz, J.L. (2010). Biomaterials in Cell Microencapsulation. In: Pedraz, J.L., Orive, G. (eds) Therapeutic Applications of Cell Microencapsulation. Advances in Experimental Medicine and Biology, vol 670. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5786-3_2

Download citation

Publish with us

Policies and ethics