Skip to main content

Flip-Chip Interconnections: Past, Present, and Future

  • Chapter
  • First Online:
Advanced Flip Chip Packaging

Abstract

Flip-chip interconnection technologies have been extensively used in many microelectronic applications for high performance systems as well as consumer electronics in recent years. There are several types of flip-chip interconnects being used today in the industry, which include high-Pb solder bumps joined to a ceramic substrate, high-Pb bumps on chip joined to eutectic PbSn on a laminate substrate, all eutectic PbSn bumps, Pb-free bumps, Cu pillar bumps, and Au-stud bumps. Steady improvements have been made in high performance packages, such as having interconnects greater than 10,000 I/O’s with a pitch less than 200 μm, migrating from ceramic to low-cost organic substrates, replacing high-Pb with Pb-free interconnects, and others. Fundamental reliability issues, especially with the Pb-free solder bumps, remain to be solved. As the expiration of European Union (EU) Reduction of Hazardous Substance (RoHS) exemption approaches soon, Pb-containing solder bumps for flip-chip interconnects are expected to be phased out in a few years. However, the recent introduction of fragile low-k, or very fragile ultra low-k interlayer dielectrics (ILD) into the back-end interconnect architectures in the advanced semiconductor devices has imposed serious technical challenges in integrating Pb-free technologies for high-performance systems. How to control the cracking of low-k ILD layers during chip joining has become an urgent issue to be resolved together by the semiconductor and packaging industries. Another reliability challenge associated with the implementation of Pb-free solder in flip-chip packages is the poor electromigration (EM) performance of Sn-rich solders. This is mainly due to the highly anisotropic crystal structure of Sn, causing the fast solute diffusion along its c-axis, combined with the aggressive interfacial reactions with under-bump metallurgy (UBM) and laminate pads.

In this chapter, the recent progress of flip-chip assembly processes is presented with ceramic substrates and organic laminates, including the new bumping technologies such as C4NP and Cu pillar bumping. In addition, various reliability challenges of Pb-free, flip-chip applications are extensively discussed along with possible solutions for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller LF (1969) Controlled collapse reflow chip joining. IBM J Res Dev 13:239

    Article  Google Scholar 

  2. Goldmann LS (1969) Optimizing cycle fatigue life of controlled collapse chip joints. Proceedings of the 19th Electronics Components Conference, pp 404–423

    Google Scholar 

  3. Totta PA (1980) Flip chip solder terminals. Proceedings of the 21st Electronics Components Conference, p 89

    Google Scholar 

  4. Totta PA, Khadpe S, Koopman N, Reiley T, Sheaffer M (1997) Chip-to-package interactions. In: Tummala R, Rymaszewski E, Klopfenstein A (eds) Microelectronics packaging handbook, Part II, 2nd edn. Chapman & Hall, London, pp 129–283

    Chapter  Google Scholar 

  5. Shih D-Y (1996) Effect of polyimide processing on multi-chip glass ceramic module fabrications. IEEE Trans Compon Packag Manuf Tech C 19(4):315

    Article  Google Scholar 

  6. Tsukada Y, Mashimoto Y, Watanuki N (1993) A novel chip replacement method for encapsulated flip chip bonding. Proceedings of the 43rd Electronics Components and Technology Conference, pp 199–204

    Google Scholar 

  7. Tsukada Y, Tsuchida S, Mashimoto Y (1992) Surface laminar circuit packaging. Proceedings of the 42nd Electronics Components and Technology Conference, pp 22–27

    Google Scholar 

  8. Tsukada Y, Maeda Y, Yamanaka K (1993) A novel solution for MCM-L utilizing surface laminar circuit on flip chip attach technology. Proceedings of the 2nd International Conference and Exhibition on Multichip Modules, pp 252–259

    Google Scholar 

  9. Kang SK, Horkans J, Andricacos P, Crruthers R, Cotte J, Datta M, Gruber P, Harper J, Kwietniak K, Sambucetti C, Shi L, Brouillette G, Danovitch D (1999) Pb-free solder alloys for flip chip applications. Proceedings of 49th ECTC, IEEE, Piscataway, NJ, p 283

    Google Scholar 

  10. Rai A, Dotta Y, Tsukamoto H, Fujiwara T, Ishii H, Nukii T, Matsui H (1990) COB (Chip on Board) technology. ISHM Proceedings. pp 474–481

    Google Scholar 

  11. Rai A, Dotta Y, Nukii T, Ohnishi T (1992) Flip chip COB Technology on PWB. Proceedings of IMC, pp 144–149

    Google Scholar 

  12. Kang SK, Leonard D, Shih DY, Gignac L, Henderson DW, Cho S, Yu J (2006) Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition. J Electron Mater 35(3):479–485

    Article  Google Scholar 

  13. Kang SK, Choi WK, Shih DY, Lauro P, Henderson DW, Gosselin T, Leonard DN (2002) Interfacial reactions, microstructure and mechanical properties of Pb-free solder joints in PBGA laminates. Proceedings of 52nd Electronic Components and Technology Conference, San Diego, CA, pp 147–153

    Google Scholar 

  14. Laurila T, Vuorinen V, Kivilahti JK (2005) Interfacial reactions between lead-free solders and common base materials. Mater Sci Eng 49:1–60

    Article  Google Scholar 

  15. Wang T, Tung F, Foo L, Dutta V (2001) Studies on a novel flip-chip interconnect structure-pillar bump. Proceedings 51st Electronic Components and Technology Conference, pp 945

    Google Scholar 

  16. Kloeser J (2006) High-performance flip chip packages with Cu pillar bumping. Global SMT & Packaging, pp 28–31

    Google Scholar 

  17. Mallik D, Mahajan R, Wakharkar V (2008) Flip chip packaging for nanoscale silicon logic devices: challenges and opportunities. In: Morris JE (ed) Nanopackaging: nanotechnology and electronics packaging. Springer, New York, pp 491–516

    Google Scholar 

  18. Gruber P et al (2005) Low cost wafer bumping. IBM J Res Dev 49(4/5):621

    Article  Google Scholar 

  19. Laine E, et al (2007) C4NP technology for lead free solder bumping. Proceedings 57th Electronic Components and Technology Conference, p 1320

    Google Scholar 

  20. Perfecto E et al (2008) C4NP technology: manufacturability, yields and reliability. Proceeding 58th Electronic Components and Technology Conference, p 1642

    Google Scholar 

  21. Shih D-Y, Dang B, Gruber P, Lu M, Kang S, Buchwalter S, Knickerbocker J, Perfecto E, Garant J, Knickerbocker S, Semkow K, Sundlof B, Busby J, Weisman R (2008) C4NP for Pb-free solder wafer bumping and 3D fine-pitch applications. Proceedings of International Conference on Electronic Packaging Technology, China

    Google Scholar 

  22. Busby J et al (2008) C4NP lead free solder bumping and 3D micro bumping. ASMC conference, pp 333–339

    Google Scholar 

  23. Dang B, shih D-Y, Buchwalter S, Tsang C, Patel C, Knickerbocker J, Gruber P, Knickerbocker S, Garant J, Semkow K, Ruhmer K, Hughlett E (2008) 50 μm Pitch Pb-free micro-bumps by C4NP technology. 58th Electronic Component and Technology Conference, pp 1505–1510, May 2008

    Google Scholar 

  24. Kasim R, Connor C, Hicks J, Jopling J, Litteken C (2000) Reliability for manufacturing on 45 nm logic technology with high-k + metal gate transistors and Pb-free packaging. International Reliability Physics Symposium, pp 350–354

    Google Scholar 

  25. Ebersberger B, Lee C (2008) Cu pillar bumps as a lead-free drop-in replacement for solder-bumped, flip-chip interconnects. Proceedings 59th Electronic Components and Technology Conference, pp 59–66

    Google Scholar 

  26. Yeoh A, Chang M, Pelto C, Huang T, Balakrishnan S, Leatherman G (2006) Copper die bumps (First Level Interconnect) and low-K dielectrics in 65 nm high volume manufacturing. 56th ECTC, pp 1611–1615

    Google Scholar 

  27. Nah JW, Suh JO, Tu KN, Yoon SW, Rao VS, Kripesh V, Hua F (2006) Electromigration in flip chip solder joints having a thick Cu column bump and a shallow solder interconnect. J Appl Phys 100:123513-1

    Article  Google Scholar 

  28. Xu L, Han JK, Liang JJ, Tu KN, Lai YS (2008) Electromigration induced fraction of compound formation in SnAgCu flip-chip solder joints with copper column. Appl Phys Lett 92:262104-1

    Google Scholar 

  29. Lai YS, Chiu YT, Chen J (2008) Electromigration reliability and morphologies of Cu pillar flip-chip solder joints with Cu substrate pad metallization. J Elecron Mater 37(10):624

    Google Scholar 

  30. Longford A, James D (2006) Cu pillar bumps in Intel microprocessors. Semicon Europa-Advanced Packaging Conference, Germany, April 2006

    Google Scholar 

  31. Nah J-W, Paik KW, Hwang TK, Kim WH (2003) A study on coining processes of solder bumps on organic substrates. IEEE Trans Electron Packag Manuf 26(2):166–171

    Article  Google Scholar 

  32. Elenius P, Leal J, Ney J, Stepniak D, Yeh S (1999) Recent advances in flip chip wafer bumping using solder paste technology. Proceedings of the 49th ECTC, pp 260–265

    Google Scholar 

  33. Li L, Wiegels S, Thompson P, Lee R (1998) Stencil printing process development for low cost flip chip interconnect. Proceedings of the 48th ECTC, pp 421–426

    Google Scholar 

  34. Kloeser J et al (1998) Low cost bumping by stencil printing: process qualification for 200 μm pitch. Proceedings of International Symposium on Microelectronics, pp 288–297

    Google Scholar 

  35. Photo courtesy of Dr. Jae-Woong Nah

    Google Scholar 

  36. Hashino E, Shimokawa K, Yamamoto Y, Tatsumi K (1998) Micro-ball wafer bumping for flip chip interconnection. Proceedings of the 51th ECTC, pp 421–426

    Google Scholar 

  37. Rinne GA (1997) Solder bumping methods for flip chip packaging. Proceedings of 47th Electronic Components & Technology Conference, pp 240–247

    Google Scholar 

  38. Tatsumi K, Yamamoto Y, Iwata K, Hashino E, Ishikawa S, Kohnox T (2005) An application of micro-ball wafer bumping to double ball bump for flip chip interconnection. Proceedings of 55th Electronic Components & Technology Conference, pp 855–860

    Google Scholar 

  39. Hazeyama I (2003) Micro-bump formation technology for flip chip LSIs using micro-solder-ball. NEC Res Dev 44(3):219–224

    Google Scholar 

  40. Inoue K et al (2003) Method of forming bumps. US Patent 6,213,386 (granted to Hitachi)

    Google Scholar 

  41. Nah J-W, Gruber PA, Lauro PA, Shih D-Y (2009) Injection molded solder—a new fine pitch substrate bumping method. Proceedings of the 59th Electronic Components & Technology Conference, pp 61–66

    Google Scholar 

  42. Directive 2002/95/EC of the European Parliament and of the Council of Jan 27 (2003) Official Journal of the European Union, 13.2.2003, L 37/19-23

    Google Scholar 

  43. Directive 2002/96/EC of the European Parliament and of the Council of Jan 27 (2003) Official Journal of the European Union, 13.2.2003, L 37/24-38

    Google Scholar 

  44. ROHS (Restriction of Hazardous Substances Directive). http://en.wikipedia.org/wiki/Restriction_of_Hazardous_Substances_Directive

  45. Frear DR, Jang JW, Lin JK, Zhang C (2001) Pb-free solders for flip-chip interconnects. JOM 53(6):28–33

    Article  Google Scholar 

  46. Kim D, Suh D, Millard T, Kim H, Kumar C, Zhu M, Xu Y (2007) Evaluation of high compliant low Ag solder alloys on OSP as a drop solution for the 2nd level Pb-free interconnection. Proceedings of 57th ECTC, pp 1614–1619

    Google Scholar 

  47. Uchida M, Ito H, Yabui K, Nishiuchi H, Togasaki T, Higuchi K, Ezawa H (2007) Low-stress interconnection for flip chip BGA employing lead-free solder bump. Proceedings of 57th ECTC, pp 885–891

    Google Scholar 

  48. Barnett JD, Bennion RB, Hall HT (1963) X-ray diffraction studies on tin at high pressure and high temperature. Science 141(3585):1041

    Article  Google Scholar 

  49. Henderson DW, Woods JJ, Gosselin TA, Bartelo J, King DE, Korhonen TM, Korhonen MA, Lehman LP, Cotts EJ, Kang SK, Lauro PA, Shih DY, Goldsmith C, Puttlitz KJ (2004) The microstructure of Sn in near eutectic Sn-Ag-Cu alloy solder joints and its role in thermomechanical fatigue. J Mater Res 19(6):1608

    Article  Google Scholar 

  50. Seo SK, Kang SK, Shih D-Y, Mo Lee H (2009) An investigation of microstructure and microhardness of Sn-Cu and Sn-Ag solders as a function of alloy composition and cooling rate. J Electron Mater 38(2):257–265

    Article  Google Scholar 

  51. Sullivan MJ, Kilpatrick SJ (2004) Degradation phenomena. In: Puttlitz KJ, Stalter KA (eds) Handbook of lead-free solder technology for microelectronic assemblies. Marcel Dekker, New York, p 920

    Google Scholar 

  52. Mason WP, Bommel HE (1956) Ultrasonic attenuation at low temperatures for metals in the normal and superconducting states. J Acoust Soc Amer 28:930

    Article  Google Scholar 

  53. Everhart JL (1967) Properties of tin and tin alloys. In: Lyman T (ed) Metals handbook. American Society of Metals, Metals Park, p 1142

    Google Scholar 

  54. Rayne JA, Chandrasekhar BS (1960) Elastic constants of β tin from 4.2 K to 300 K. Phys Rev 120:1658

    Article  Google Scholar 

  55. Dyson BF (1966) Diffusion of gold and silver in tin single crystals. J Appl Phys 37:2375

    Article  Google Scholar 

  56. Dyson BF, Anthony TR, Turnbull D (1967) Interstitial diffusion of copper in tin. J Appl Phys 37:3408

    Article  Google Scholar 

  57. Yeh DC, Huntington HB (1984) Extreme fast-diffusion system: Nickel in single-crystal tin. Phys Rev Lett 53(15):1469

    Article  Google Scholar 

  58. Huang FH, Huntington HB (1974) Diffusion of Sb124, Cd109, Sn113, and Zn65 in tin. Phys Rev B 9(4):1479

    Article  Google Scholar 

  59. Bieler TR, Jiang H, Lehman LP, Kirkpatrick, Cotts EJ (2006) Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints. 46th ECTC Proceedings, 1462,

    Google Scholar 

  60. Lu M, Shih D-Y, Lauro P, Goldsmith C, Henderson DW (2008) Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders. Appl Phys Lett 92:211909

    Article  Google Scholar 

  61. Kang SK, Lauro P, Shih DY, Henderson DW, Puttlitz KJ (2005) The microstructure, solidification, mechanical properties, and thermal fatigue behavior of lead(Pb)-free solders and solder joints used in microelectronic applications. IBM J Res Dev 49(4/5):606–620

    Google Scholar 

  62. Kang SK, Choi WK, Shih DY, Henderson DW, Gosselin T, Sarkhel A, Goldsmith C, Puttlitz K (2003) Formation of Ag3Sn plates in Sn-Ag-Cu alloys and optimization of their alloy composition. Proceedings of 53rd ECTC, New Orleans, LA, May 2003, p 64–70

    Google Scholar 

  63. Kang SK, Choi WK, Shih DY, Henderson DW, Gosselin T, Sarkhel A, Goldsmith C, Puttlitz KJ (2003) Study of Ag3Sn plate formation in the solidification of near ternary eutectic Sn-Ag-Cu alloys. J Mater 55(6):61–65

    Google Scholar 

  64. Kinyanjui R, Lehman LP, Zavalij L, Cotts E (2006) Effect of sample size on the solidification of temperature and microstructure of SnAgCu near eutectic alloys. J Mater Res 20(11):2914–2918

    Article  Google Scholar 

  65. Kang SK, Cho MG, Lauro P, Shih D-Y (2007) Study of the undercooling of Pb-free, flip-chip solder bumps and in-situ observation of solidification process. J Mater Res 22(3):557

    Article  Google Scholar 

  66. Kang SK, Cho MG, Lauro P, Shih D-Y (2007) Critical factors affecting the undercooling of Pb-free, flip-chip solder bumps and in-situ observation of solidification process. Proceedings 2007 ECTC, Reno, NV, May 2007, p 1597

    Google Scholar 

  67. Andricacos PC, Datta M, Horkans WJ, Kang SK, Kwietniak KT (1999) Barrier layers for electroplated SnPb eutectic solder joints. US Patent 5,937,320, 10 Aug 1999

    Google Scholar 

  68. Jang SY, Wolf J, Ehrmann O, Gloor H, Schreiber T, Reichl H, Park KW (2001) CrCu based UBM study with electroplated Pb/63Sn solder bumps-interfacial reaction and bump shear strength. IEEE Trans Compon Packag Technol 26(1):245

    Article  Google Scholar 

  69. Kang SK, Rai RS, Purushothaman S (1996) Interfacial reactions during soldering with lead- tin eutectic and Pb-free, Tin-rich solders. J Electron Mater 25(7):1113–1120

    Article  Google Scholar 

  70. Kang SK, Shih DY, Fogel K, Lauro P, Yim MJ, Advocate G, Griffin M, Goldsmith C, Henderson DW, Gosselin T, King D, Konrad J, Sarkhel A, Puttlitz KJ (2002) Interfacial reaction studies on lead (Pb)-free solder alloys. IEEE Trans Electron Packag Manuf 25(3):155

    Article  Google Scholar 

  71. Moon K-W, Boettinger WJ, Kattner UR, Biancaniello FS, Handwerker CA (2000) Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys. J Electron Mater 29(10):1122–1136

    Article  Google Scholar 

  72. Ghosh G (1999) Thermodynamic modeling of the nickel-lead-tin system. Metall Mater Trans A 30A:1481–1494

    Article  Google Scholar 

  73. Andricacos PC, Datta M, Horkans WJ, Kang SK, Kwietniak KT, Mathad GS, Purushothaman S, Shi L, Tong H-M (2001) Flip-chip interconnections using lead-free solders. US Patent 6,224,690 B1, 1 May 2001

    Google Scholar 

  74. Cheng Y-T, Chiras SR, Henderson DW, Kang SK, Kilpatrick SJ, Nye HA, Sambucetti CJ, Shih D-Y (2007) Ball limiting metallurgy, interconnection structure including the same, and method of forming an interconnection structure. US Patent 7,273,803, 25 Sept 2007

    Google Scholar 

  75. Fogel KE, Ghosal B, Kang SK, Kilpatrick S, Lauro PA, Nye HA, Shih D-Y, Zupanski-Nielsen DS (2008) Interconnections for flip-chip using lead-free solders and having reaction barrier layers. US Patent 7,410,833 B2, 12 Aug 2008

    Google Scholar 

  76. Guo J, Zhang L, Xian A, Shang JK (2007) Solderability of electrodeposited Fe-Ni alloys with eutectic SnAgCu solders. J Mater Sci Technol 23(6):811

    Google Scholar 

  77. Dietz G, Schneider HD (1990) Decomposition of crystalline ferromagnetic particles precipitated in amorphous paramagnetic Ni-P. J Phys Condens Matter 2:2169

    Article  Google Scholar 

  78. Jang JW, Kim PG, Tu KN, Frear DR, Thompson P (1999) Solder reaction-assisted crystallization of electroless Ni–P under bump metallization in low cost flip chip technology. J Appl Phys 85:8456

    Article  Google Scholar 

  79. Sohn YC, Yu J, Kang SK, Choi WK, Shih DY (2003) Study of the reaction mechanism between electroless Ni-P and Sn and its effect on the crystallization of Ni-P. J Mater Res 18(1):4–7

    Article  Google Scholar 

  80. Sohn YC, Yu J, Kang SK, Shih DY, Lee TY (2004) Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization. J Mater Res 19(8):2428–2436

    Article  Google Scholar 

  81. Sohn YC, Yu J, Kang SK, Shih DY, Lee TY (2005) Effect of intermetallics spalling on the mechanical behavior of electroless Ni(P)/Pb-free solder interconnection. Proceedings of 55th ECTC, pp 83–88

    Google Scholar 

  82. Choi WK, Kang SK, Sohn YC, Shih DY (2003) Study of IMC morphologies and phase characteristics affected by the reactions of Ni and Cu metallurgies with Pb-free solder joints. Proceedings of 53rd Elec. Comp. & Tech Conference, New Orleans, LA, CA, pp 1190–1196

    Google Scholar 

  83. Chen WT, Ho CE, Kao CR (2002) Effects of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders. J Mater Res 17(2):263

    Article  Google Scholar 

  84. Tsai JY, Kao CR (2002) The effect of Ni on the interfacial reaction between Sn-Ag solder and Cu metallization. Proceedings of 4th International Symposium on Electronic Materials and Packaging, Kaohsiung, Taiwan, Dec 2002, p 271

    Google Scholar 

  85. Choi WK, Kim JH, Jeong SW, Lee HM (2002) Interfacial microstructure and joint strength of Sn-3.5Ag-X (X = Cu, In, Ni) solder joint. J Mater Res 17(1):43

    Article  Google Scholar 

  86. Yu DQ, Zhao J, Wang L (2004) Improvement on the microstructure stability, mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements. J Alloys Compd 376(1/2):170–175

    Article  Google Scholar 

  87. Kim KS, Huh SH, Suganuma K (2003) Effects of fourth alloying additive on microstructure and tensile properties of Sn-Ag-Cu and joints with Cu. Microelectron Reliab 43:259–267

    Article  Google Scholar 

  88. Anderson IE, Harringa JL (2006) Suppression of void coalescence in thermal aging of tin-silver-copper-X solder joints. J Electron Mater 35(1):94–106

    Article  Google Scholar 

  89. Rizvi MJ, Chan YC, Bailey C, Lu H, Islam MN (2006) Effects of adding 1 wt% Bi into the Sn-2.8Ag-0.5Cu solder alloy on the intermetallic formation with Cu substrate during soldering and isothermal aging. J Alloys Compd 407:208–214

    Article  Google Scholar 

  90. Kang SK, Shih DY, Leonard D, Henderson DW, Gosselin T, Cho SI, Yu J, Choi WK (2004) Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying. JOM 56:34

    Article  Google Scholar 

  91. de Sousa I, Henderson DW, Patry L, Kang SK, Shih DY (2006) The influence of low level doping on the thermal evolution of SAC alloy solder joints with Cu pad structures. Proceedings of 56th Electronic Components and Technology Conference, San Diego, CA, p 1454

    Google Scholar 

  92. Cho MG, Kang SK, Shih D-Y, Lee HM (2007) Effects of minor addition of Zn on interfacial reactions of Sn-Ag-Cu and Sn-Cu solders with various Cu substrates during thermal aging. J Electron Mater 36(11):1501–1509

    Article  Google Scholar 

  93. Jee YK, Yu J, Ko YH (2007) Effects of Zn addition on the drop reliability of Sn-3.5Ag-xZn/Ni(P) solder joints. J Mater Res 22(10):2776–2784

    Article  Google Scholar 

  94. Lu M, Lauro P, Shih DY, Kang SK, Chae SH, Seo SK (2009) The effects of Cu, Ag compositions and Zn doping on the electromigration performance of Pb-free solders. Proceedings 2009 ECTC, San Diego, 26–29 May 2009, p 922

    Google Scholar 

  95. Cho MG, Seo S, Lee HM (2009) Wettability and interfacial reactions of Sn-based Pb-free solders with Cu-xZn alloy under bump metallurgies, J Alloys Compd 474:510

    Article  Google Scholar 

  96. Kang SK, Cho MG, Shih D-Y, Seo SK, Lee HM (2008) Controlling the interfacial reactions in Pb-free interconnections by adding minor alloying elements to Sn-rich solders. Proceedings of 58th ECTC, p 478

    Google Scholar 

  97. Sawamura T, Komiya H, Inazawa T, Nakagawa F (2004) Pb-free soldering alloy. US Patent 6,692,691B2, 17 Feb 2004

    Google Scholar 

  98. Liu W, Bachorik P, Lee NC (2008) The superior drop test performance of SAC-Ti solders and its mechanism. Proceedings of 58th ECTC, p 452

    Google Scholar 

  99. Li GY, Chen BL, Tey JN (2004) Reaction of Sn-3.5Ag-0.7Cu-xSb solder with Cu metallization during reflow soldering. IEEE Trans Elecron Packag Manuf 27(1):1521

    Google Scholar 

  100. Lee HT, Lin HS, Lee CS, Chen PW (2005) Reliability of Sn-Ag-Sb lead-free solder joints. Mater Sci Eng A 407:36–44

    Article  Google Scholar 

  101. Lau JH (2000) Low cost flip chip technologies. McGraw-Hill, New York, 183

    Google Scholar 

  102. Zhang C, Lin JK, Li L (2001) Thermal fatigue properties of Pb-free solders on Cu and NiP under bump metallurgies. Proceedings of 51st ECTC, p 463

    Google Scholar 

  103. Terashima S, Kariya Y, Hosoi T, Tanaka M (2003) Effect of silver content on thermal fatigue life of Sn-xAg-0.5Cu flip-chip interconnects. J Elecron Mater 32(12):1527

    Article  Google Scholar 

  104. Kang SK, Lauro P, Shih D-Y, Henderson DW, Bartelo J, Gosselin T, Cain SR, Goldsmith C, Puttlitz K, Hwang TK, Choi WK (2004) The microstructure, thermal fatigue, and failure analysis of near-ternary eutectic Sn-Ag-Cu solder joints. Mater Trans (The Japan Inst of Metals) 45(3):695–702

    Google Scholar 

  105. Kang SK, Lauro P, Shih D-Y, Henderson DW, Gosselin T, Bartelo J, Cain SR, Goldsmith C, Puttlitz K, Hwang TK (2004) Evaluation of thermal fatigue life and failure mechanism of Sn-Ag-Cu solder joints with reduced Ag contents. Proceedings of 54th ECTC, p 661

    Google Scholar 

  106. Arfaei B, Xing Y, Woods J, Wolcott N, Tumne P, Borgesen P, Cotts E (2008) The effect of Sn grain number and orientation on the shear fatigue life of SnAgCu solder joints. Proceedings of 58th ECTC, p 459

    Google Scholar 

  107. Quinones H, Babiarz A (2001) Flip chip, CSP, and WLP technologies: a reliability perspective. IMAPS Nordic, p 1, Sep 2001

    Google Scholar 

  108. Jang SY, Hong SM, Park MY, Kwok DO, Jeong JW, Roh SH, Moon YJ (2004) FCOB reliability study for mobile applications. Proceedings of 2004 ECTC, p 62

    Google Scholar 

  109. Syed A, Kim TS, Cha SW, Scanlon J, Ryu CG (2007) Effect of Pb-free alloy composition on drop/impact reliability of 0.4, 0.5, 0.8 mm pitch chip scale packages with NiAu pad finish. Proceedings of 2007 ECTC, p 951

    Google Scholar 

  110. Farris A, Pan J, Liddicoat A, Toleno BJ, Maslyk D, Shanggun D, Bath J, Willie D, Geiger DA (2008) Drop test reliability of lead-free chip scale packages. Proceedings of 2008 ECTC, p 1173

    Google Scholar 

  111. Chiu TC, Zeng K, Stierman R, Edwards D, Ano K (2005) Effect of thermal aging on board level drop reliability for Pb-free BGA packages. Proceedings of 2004 ECTC, p 1256

    Google Scholar 

  112. Date M, Shoji T, Fujiyoshi M, Sato K, Tu KN (2004) Impact reliability of solder joints. Proceedings of 2004 ECTC, p 668

    Google Scholar 

  113. Borgesen P, Yin L, Kondos R, Henderson DW, Servis G, Therriault J, Wang J, Srihari K (2007) Sporadic degradation in board level drop reliability—those aren’t all Kirkendall voids!. Proceedings of 2007 ECTC, p 136

    Google Scholar 

  114. Mei Z, Ahmad M, Hu M, Ramakrishna G (2005) Kirkendall voids at Cu/solder interface and their effects on solder joint reliability. Proceedings of 55th Electronic Component and Technology Conference, pp 1256–1262

    Google Scholar 

  115. Amagai M, Toyoda Y, Ohnishi T, Akita S (2004) High drop test reliability: lead-free solders. Proceedings of 2004 ECTC, p 1304

    Google Scholar 

  116. Kim H, Zhang M, Kumar CM, Suh D, Liu P, Kim D, Xie M, Wang Z (2007) Improved drop reliability performance with lead free solders of low Ag content and their failure modes. Proceedings of 2007 ECTC, p 962

    Google Scholar 

  117. Sylvestre J, Blander A, Oberson V, Perfecto E, Srivastava K (2008) The impact of process parameters on the fracture of device structures. Proceedings of the 58th Electronic Components and Technology Conference, pp 82–88

    Google Scholar 

  118. Zeng K, Tu KN (2002) Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater Sci Eng R Rep 38:55–105

    Article  Google Scholar 

  119. Lu M, Shih D-Y, Polastre R, Goldsmith C, Henderson DW, Zhang H, Cho MG (2008) Comparison of electromigration performance for Pb-free solders and surface finishes with Ni UBM. Proceedings of 58th ECTC, p 360

    Google Scholar 

  120. Seo S-K, Kang SK, Shih D-Y, Lee HM (2009) The evolution of microstructure microhardness of Sn-Ag and Sn-Cu solders during high temperature aging. Microelectron Reliab 49:288

    Article  Google Scholar 

  121. Blech IA (1976) Electromigration in thin aluminum films on titanium nitride. J Appl Phys 47:1203

    Article  Google Scholar 

  122. Lu M, Shih D-Y, Lauro P, Goldsmith C (2009) Blech effect in Pb-free flip-chip solder joint. J Appl Phys Lett 94:011912

    Article  Google Scholar 

  123. Lu M, Shih D-Y, Kang SK, Goldsmith C, Flaitz P (2009) Effect of Zn doping on SnAg solder microstructure and electromigration stability. J Appl Phys 106:053509

    Article  Google Scholar 

  124. Tu KN (2007) Electromigration in flip chip solder joint, Chapter 9. In: Tu KN (ed) Solder joint technology. Springer, New York, pp 245–287

    Chapter  Google Scholar 

  125. Chen C, Liang SW (2007) Electromigration issues in lead-free solder joints. In: Subramanian KN (ed) Lead-free electronic solders. Springer, New York, pp 259–268

    Chapter  Google Scholar 

  126. Lee S, Guo X, Ong CK (2005) Electromigration effect on Cu-pillar (Sn) bumps. Electronics Packaging Technology Conference, pp 135–139

    Google Scholar 

  127. Kariya Y et al (2000) Tin pest in lead-free solders. Soldering Surf Mount Technol 13:39

    Article  Google Scholar 

  128. Henderson DW, Gosselin TA, Goldsmith CC, Puttlitz KJ, Kang SK, Shih DY, Choi WK (2004) Lead-free tin-silver-copper alloy solder composition. US Patent 6805974, 19 Oct 2004

    Google Scholar 

  129. Knickerbocker JU, Andry PS, Dang B, Horton RR, Interrante MJ, Patel CS, Polastre RJ, Sakuma K, Sirdeshmukh R, Sprogis EJ, Sri-Jayantha SM, Stephens AM, Topol AW, Tsang CK, Webb BC, Wright SL (2008) Three-dimensional silicon integration. IBM J Res Dev 52(6):553–569

    Article  Google Scholar 

  130. Meindl JD, Davis JA, Zarkesh-Ha P, Patel CS, Martin KP, Kohl PA (2002) Interconnect opportunities for gigascale integration. IBM J Res Dev 46:245–263

    Article  Google Scholar 

  131. Dang B, Wright SL, Andry PS, Sprogis EJ, Tsang CK, Interrante MJ, Webb BC, Polastre RJ, Horton RR, Patel CS, Sharma A, Zheng J, Sakuma K, Knickerbocker JU (2008) 3D chip stacking with C4 technology. IBM J Res Dev 52(6):599–609

    Article  Google Scholar 

  132. Dang B, Wright S, Andry P, Sprogis E, Ketkar S, Tsang C, Polastre R, Knickerbocker J (2009) 3D chip stack with integrated decoupling capacitors. 59th Electronic Component and Technology Conference, pp 1–5, May 2009

    Google Scholar 

  133. Yu A, Lau J, Ho S, Kumar A, Hnin W, Yu D, Jong M, Kripesh V, Pinjala D, Kwong D (2009) Study of 15 μm pitch solder microbumps for 3D IC integration. 59th Electronic Component and Technology Conference, pp 6–10, May 2009

    Google Scholar 

  134. Krupp A et al (2005) 3D integration with ICV-solid technology. Conference on 3D Architecture for Semiconductor and Packaging, Tempe, AZ, June 2005

    Google Scholar 

  135. Ramm P (2004) Vertical integration technologies. Workshop on 3D Integration of Semiconductor Devices, San Diego, Oct 2004

    Google Scholar 

  136. Lee K (2006) The next generation package technology for higher performance and smaller systems. Conference on 3D Architecture for Semiconductor and Packaging, Burlingame, CA, Oct 2006

    Google Scholar 

  137. Schaper L (2003) 53rd Electronic Component and Technology Conference, pp 631–633, May 2003

    Google Scholar 

  138. Schaper L, Burkett S, Spiesshoefer S, Vangara G, Rahman Z, Polamreddy S (2005) Architectural implications and process development of 3-D VLSI Z -axis interconnects using through Silicon Vias. Trans IEEE Adv Packag 28(3):356, Aug 2005

    Article  Google Scholar 

  139. Wang Y, Suga T (2008) 20-μm pitch Au micro-bump interconnection at room temperature in ambient air. 58th Electronic Component and Technology Conference, pp 944–949, May 2008

    Google Scholar 

  140. Chanchani R (2009) 3D Integration technology—an overview. In: Lu D, Wong CP (eds) Materials for advanced packaging. Springer, New York, pp 1–50

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Kwon Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kang, SK., Shih, DY., Bernier, W.E. (2013). Flip-Chip Interconnections: Past, Present, and Future. In: Tong, HM., Lai, YS., Wong, C. (eds) Advanced Flip Chip Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5768-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5768-9_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5767-2

  • Online ISBN: 978-1-4419-5768-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics