Skip to main content

A Novel Coordination Strategy for Multi-Agent Control Using Overlapping Subnetworks with Application to Power Systems

  • Chapter
  • First Online:
Efficient Modeling and Control of Large-Scale Systems

Abstract

Power networks [15,16,24] are one of the corner stones of our modern society. The dynamics of a power network as a whole are the result of the interactions between themillions of individual components.Conventionally, the power in power networks is generated using several large power generators. This power is then transported through the transmission and distribution network to the location where it is consumed, e.g., households and industry. Power flows are then relatively predictable, and the number of control agents is relatively low. Due to the ongoing deregulation in the power generation and distribution sector in the US and Europe, the number of players involved in the generation and distribution of power has increased R. significantly. The number of source nodes of the power distribution network is increasing even further as also large-scale industrial suppliers and small-scale individual households start to feed electricity into the network [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Arnold, R. R. Negenborn, G. Andersson, and B. De Schutter. Multi-area predictive control for combined electricity and natural gas systems. In Proceedings of the European Control Conference 2009, Budapest, Hungary, August 2009

    Google Scholar 

  2. R. D. Christie. Power Systems Test Case Archive. URL: http://www.ee.washington.edu/research/pstca/, 2008. Last accessed at May 23, 2008

  3. A. J. Conejo, F. J. Nogales, and F. J. Prieto. A decomposition procedure based on approximate Newton directions. Mathematical Programming, Series A, 93(3):495–515, December 2002

    Article  MATH  MathSciNet  Google Scholar 

  4. C. F. Daganzo. Fundamentals of Transportation and Traffic Operations. Pergamon Press, New York, 1997

    Google Scholar 

  5. A. Edris, R. Adapa, M. H. Baker, L. Bohmann, K. Clark, K. Habashi, L. Gyugyi, J. Lemay, A. S. Mehraban, A. K. Meyers, J. Reeve, F. Sener, D. R. Torgerson, and R. R. Wood. Proposed terms and definitions for flexible AC transmission system (FACTS). IEEE Transactions on Power Delivery, 12(4):1848–1853, October 1997

    Article  Google Scholar 

  6. P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Journal on Optimisation, 12(4):979–1006, 2002

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Glanzmann and G. Andersson. Using FACTS devices to resolve congestions in transmission grids. In Proceedings of the CIGRE/IEEE PES International Symposium, San Antonio, TX, October 2005

    Google Scholar 

  8. G. Glanzmann and G. Andersson. FACTS control for large power systems incorporating security aspects. In Proceedings of X SEPOPE, Florianopolis, Brazil, May 2006

    Google Scholar 

  9. P. Hines, L. Huaiwei, D. Jia, and S. Talukdar. Autonomous agents and cooperation for the control of cascading failures in electric grids. In Proceedings of the 2005 IEEE International Conference on Networking, Sensing and Control, pages 273–278, Tucson, AZ, March 2005

    Google Scholar 

  10. N. G. Hingorani and L. Gyugyi. Understanding FACTS Concepts and Technology of Flexible AC Transmission Systems. IEEE Press, New York, New York, 2000

    Google Scholar 

  11. K. Holmström, A. O. Göran, and M. M. Edvall. User’s guide for Tomlab /SNOPT, December 2006

    Google Scholar 

  12. G. Hug-Glanzmann, R. R. Negenborn, G. Andersson, B. De Schutter, and J. Hellendoorn. Multi-area control of overlapping areas in power systems for FACTS control. In Proceedings of Power Tech 2007, Lausanne, Switzerland, July 2007. Paper 277

    Google Scholar 

  13. N. Jenkins, R. Allan, P. Crossley, D. Kirschen, and G. Strbac. Embedded Generation. TJ International, Padstow, UK, 2000

    Google Scholar 

  14. B. H. Kim and R. Baldick. A comparison of distributed optimal power flow algorithms. IEEE Transactions on Power Systems, 15(2):599–604, May 2000

    Article  Google Scholar 

  15. P. Kundur. Power System Stability and Control. McGraw-Hill, New York, New York, 1994

    Google Scholar 

  16. J. Machowski, J. Bialek, and J. R. Bumby. Power System Dynamics and Stability. Wiley, New York, New York, 1997

    Google Scholar 

  17. Mathworks. Matlab. URL: http://www.mathworks.com/, 2007

  18. R. R. Negenborn. Multi-Agent Model Predictive Control with Applications to Power Networks. PhD thesis, Delft University of Technology, Delft, The Netherlands, December 2007

    Google Scholar 

  19. R. R. Negenborn, B. De Schutter, and J. Hellendoorn. Multi-agent model predictive control for transportation networks: Serial versus parallel schemes. Engineering Applications of Artificial Intelligence, 21(3):353–366, April 2008

    Article  Google Scholar 

  20. R. R. Negenborn, S. Leirens, B. De Schutter, and J. Hellendoorn. Supervisory nonlinear MPC for emergency voltage control using pattern search. Control Engineering Practice, 17(7): 841–848, July 2009

    Article  Google Scholar 

  21. R. R. Negenborn, P. J. van Overloop, T. Keviczky, and B. De Schutter. Distributed model predictive control for irrigation canals. Networks and Heterogeneous Media, 4(2):359–380, June 2009

    Article  MATH  Google Scholar 

  22. F. J. Nogales, F. J. Prieto, and A. J. Conejo. Multi-area AC optimal power flow: A new decomposition approach. In Proceedings of the 13th Power Systems Control Conference (PSCC), pages 1201–1206, Trondheim, Germany, 1999

    Google Scholar 

  23. A. J. Osiadacz. Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston, TX, 1987

    Google Scholar 

  24. P. W. Sauer and M. A. Pai. Power System Dynamics and Stability. Prentice-Hall, London, UK, 1998

    Google Scholar 

  25. K. P. Sycara. Multiagent systems. AI Magazine, 2(19):79–92, 1998

    Google Scholar 

  26. D. D. SZiljakŠiljak. Decentralized Control of Complex Systems. Academic, Boston, Massachusetts, 1991

    Google Scholar 

  27. G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge, Massachusetts, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Negenborn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Negenborn, R.R., Hug-Glanzmann, G., De Schutter, B., Andersson, G. (2010). A Novel Coordination Strategy for Multi-Agent Control Using Overlapping Subnetworks with Application to Power Systems. In: Mohammadpour, J., Grigoriadis, K. (eds) Efficient Modeling and Control of Large-Scale Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5757-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5757-3_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5756-6

  • Online ISBN: 978-1-4419-5757-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics