Skip to main content

Reactive Lymphadenopathies: Molecular Analysis

  • Chapter
  • First Online:
Molecular Pathology of Hematolymphoid Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 4))

  • 1277 Accesses

Abstract

The molecular analysis of benign and reactive processes in lymph nodes is important in several contexts. In terms of research into underlying pathophysiology, molecular analyzes of clonality may be crucial in establishing that a rare or enigmatic process, such as Rosai–Dorfman disease, is a non-clonal proliferative lesion. In addition, molecular testing for the presence of infectious agents may be critical in evaluating the causative effects of these infections in benign and reactive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hummel M, Stein H. Clonality and malignancy. PCR assays for the diagnosis of clonal B- and T-cell proliferations: potentials and pitfalls. Verh Dtsch Ges Pathol. 2003;87:102–108.

    CAS  PubMed  Google Scholar 

  2. Thériault C, Galoin S, Valmary S, et al. PCR analysis of immunoglobulin heavy chain (IgH) and TcR-gamma chain gene rearrangements in the diagnosis of lymphoproliferative disorders: results of a study of 525 cases. Mod Pathol. 2000;13:1269–1279.

    Article  PubMed  Google Scholar 

  3. De Re V, De Vita S, Carbone A, et al. The relevance of VDJ PCR protocols in detecting B-cell clonal expansion in lymphomas and other lymphoproliferative disorders. Tumori. 1995;81:405–409.

    CAS  PubMed  Google Scholar 

  4. Tbakhi A, Totos G, Pettay JD, et al. The effect of fixation on detection of B-cell clonality by polymerase chain reaction. Mod Pathol. 1999;12:272–278.

    CAS  PubMed  Google Scholar 

  5. Iijima T, Inadome Y, Noguchi M. Clonal proliferation of B lymphocytes in the germinal centers of human reactive lymph nodes: possibility of overdiagnosis of B cell clonal proliferation. Diagn Mol Pathol. 2000;9:132–136.

    Article  CAS  PubMed  Google Scholar 

  6. Bahler DW, Swerdlow SH. Clonal salivary gland infiltrates associated with myoepithelial sialadenitis (Sjögren’s syndrome) begin as nonmalignant antigen-selected expansions. Blood. 1998;91:1864–1872.

    CAS  PubMed  Google Scholar 

  7. Itoh K, Patki V, Furie RA, et al. Clonal expansion is a characteristic feature of the B-cell repetoire of patients with rheumatoid arthritis. Arthritis Res. 2000;2:50–58.

    Article  CAS  PubMed  Google Scholar 

  8. Saxena A, Alport EC, Moshynska O, et al. Clonal B cell populations in a minority of patients with Hashimoto’s thyroiditis. J Clin Pathol. 2004;57:1258–1263.

    Article  CAS  PubMed  Google Scholar 

  9. Engels K, Oeschger S, Hansmann ML, et al. Bone marrow trephines containing lymphoid aggregates from patients with rheumatoid and other autoimmune disorders frequently show clonal B-cell infiltrates. Hum Pathol. 2007;38:1402–1411.

    Article  CAS  PubMed  Google Scholar 

  10. Lonergan CL, Lentzner AN, Hartmann CJ, et al. Clonal bands are readily demonstrable in benign follicles individually excised from paraffin blocks utilizing PCR for amplification of IgH gene regions [abstract]. Mod Pathol. 2002;15:251A.

    Google Scholar 

  11. Limpens J, de Jong D, van Krieken JH, et al. Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene. 1991;6:2271–2276.

    CAS  PubMed  Google Scholar 

  12. Aster JC, Kobayashi Y, Shiota M, et al. Detection of the t(14;18) at similar frequencies in hyperplastic lymphoid tissues from American and Japanese patients. Am J Pathol. 1992;141:291–299.

    CAS  PubMed  Google Scholar 

  13. Ohshima K, Kikuchi M, Kobari S, et al. Amplified bcl-2/JH rearrangements in reactive lymphadenopathy. Virchows Arch B Cell Pathol Incl Mol Pathol. 1993;63:197–198.

    Article  CAS  PubMed  Google Scholar 

  14. Limpens J, Stad R, Vos C, et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood. 1995;85:2528–2536.

    CAS  PubMed  Google Scholar 

  15. Rauzy O, Galoin S, Chale JJ, et al. Detection of t(14;18) carrying cells in bone marrow and peripheral blood from patients affected by non-lymphoid diseases. Mol Pathol. 1998;51:333–338.

    CAS  PubMed  Google Scholar 

  16. Dölken G, Illerhaus G, Hirt C, et al. BCL-2/JH rearrangements in circulating B cells of healthy blood donors and patients with nonmalignant diseases. J Clin Oncol. 1996;14:1333–1344.

    PubMed  Google Scholar 

  17. Tsimberidou AM, Jiang Y, Ford RJ, et al. Quantitative real-time polymerase chain reaction for detection of circulating cells with t(14;18) in volunteer blood donors and patients with follicular lymphoma. Leuk Lymphoma. 2002;43:1589–1598.

    Article  CAS  PubMed  Google Scholar 

  18. Schmitt C, Balogh B, Grundt A, et al. The bcl-2/IgH rearrangement in a population of 204 healthy individuals: occurrence, age and gender distribution, breakpoints, and detection method validity. Leuk Res. 2006;30:745–750.

    Article  CAS  PubMed  Google Scholar 

  19. Kojima M, Nakamura S, Tanaka H, et al. Massive hyperplasia of marginal zone B-cells with clear cytoplasm in the lymph node: a case report. Pathol Res Pract. 2003;199:625–628.

    Article  PubMed  Google Scholar 

  20. Kojima M, Motoori T, Iijima M, et al. Florid monocytoid B-cell hyperplasia resembling nodal marginal zone B-cell lymphoma of mucosa associated lymphoid tissue type. A histological and immunohistochemical study of four cases. Pathol Res Pract. 2006;202:877–882.

    Article  PubMed  Google Scholar 

  21. Farhi DC, Ashfaq R. Splenic pathology after traumatic injury. Am J Clin Pathol. 1996;105:474–478.

    CAS  PubMed  Google Scholar 

  22. Kroft SH, Singleton TP, Dahiya M, et al. Ruptured spleens with expanded marginal zones do not reveal occult B-cell clones. Mod Pathol. 1997;10:1214–1220.

    CAS  PubMed  Google Scholar 

  23. Dunphy CH, Bee C, McDonald JW, et al. Incidental early detection of a splenic marginal zone lymphoma by polymerase chain reaction analysis of paraffin-embedded tissue. Arch Pathol Lab Med. 1998;122:84–86.

    CAS  PubMed  Google Scholar 

  24. Attygalle AD, Liu H, Shirali S, et al. Atypical marginal zone hyperplasia of mucosa-associated lymphoid tissue: a reactive condition of childhood showing immunoglobulin lambda light-chain restriction. Blood. 2004;104:3343–3348.

    Article  CAS  PubMed  Google Scholar 

  25. Jones D. Dismantling the germinal center: comparing the processes of transformation, regression, and fragmentation of the lymphoid follicle. Adv Anat Pathol. 2002;9:129–138.

    Article  PubMed  Google Scholar 

  26. Chang CC, Osipov V, Wheaton S, et al. Follicular hyperplasia, follicular lysis, and progressive transformation of germinal centers. A sequential spectrum of morphologic evolution in lymphoid hyperplasia. Am J Clin Pathol. 2003;120:322–326.

    Article  PubMed  Google Scholar 

  27. Lee SC, Berg KD, Racke FK, et al. Pseudo-spikes are common in histologically benign lymphoid tissues. J Mol Diagn. 2000;2:145–152.

    CAS  PubMed  Google Scholar 

  28. O’Malley DP. T-cell large granular leukemia and related proliferations. Am J Clin Pathol. 2007;127:850–859.

    Article  PubMed  Google Scholar 

  29. Assaf C, Hummel M, Steinhoff M, et al. Early TCR-beta and TCR-gamma PCR detection of T-cell clonality indicates minimal tumor disease in lymph nodes of cutaneous T-cell lymphoma: diagnostic and prognostic implications. Blood. 2005;105:503–510.

    Article  CAS  PubMed  Google Scholar 

  30. Olsen E, Vondereheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of research and Treatment of Cancer (EORTC). Blood. 2007;110:1713–1722.

    Article  CAS  PubMed  Google Scholar 

  31. Onciu M, Medeiros LJ. Kikuchi–Fujimoto lymphadenitis. Adv Anat Pathol. 2003;10:204–211.

    Article  PubMed  Google Scholar 

  32. Hollingsworth HC, Peiper SC, Weiss LM, et al. An investigation of the viral pathogenesis of Kikuchi–Fujimoto disease. Lack of evidence for Epstein–Barr virus or human herpesvirus type 6 as the causative agents. Arch Pathol Lab Med. 1994;118:134–140.

    CAS  PubMed  Google Scholar 

  33. Cho KJ, Lee SS, Khang SK. Histiocytic necrotizing lymphadenitis. A clinico-pathologic study of 45 cases with in situ hybridization for Epstein–Barr virus and hepatitis B virus. J Korean Med Sci. 1996;11:409–414.

    CAS  PubMed  Google Scholar 

  34. George TI, Jones CD, Zehnder JL, et al. Lack of human herpesvirus 8 and Epstein–Barr virus in Kikuchi’s histiocytic necrotizing lymphadenitis. Hum Pathol. 2003;34:130–135.

    Article  PubMed  Google Scholar 

  35. Chim CS, Shek W, Liang R, et al. Kimura’s disease: no evidence of clonality. Br J Ophthalmol. 1999;83:880–881.

    Article  CAS  PubMed  Google Scholar 

  36. Jang KA, Ahn SJ, Choi JH, et al. Polymerase chain reaction (PCR) for human herpesvirus 8 and heteroduplex PCR for clonality assessment in angiolymphoid hyperplasia with eosinophilia and Kimura’s disease. J Cutan Pathol. 2001;28:363–367.

    Article  CAS  PubMed  Google Scholar 

  37. Chim CS, Fung A, Shek TW, et al. Analysis of clonality in Kimura’s disease. Am J Surg Pathol. 2002;26:1083–1086.

    Article  CAS  PubMed  Google Scholar 

  38. Chim CS, Liang R, Fung A, et al. Further analysis of clonality in Kimura’s disease. Am J Surg Pathol. 2003;27:703–704.

    Article  CAS  PubMed  Google Scholar 

  39. Nagore E, Llorca J, Sánchez-Motilla JM, et al. Detection of Epstein–Barr virus DNA in a patient with Kimura’s disease. Int J Dermatol. 2000;39:618–620.

    Article  CAS  PubMed  Google Scholar 

  40. McClain KL, Natkunam Y, Swerdlow SH. Atypical cellular disorders. Hematology Am Soc Hematol Educ Program. 2004;283–296.

    Google Scholar 

  41. Paulli M, Bergamaschi G, Tonon L, et al. Evidence for a polyclonal nature of the cell infiltrate in sinus histiocytosis with massive lymphadenopathy (Rosai–Dorfman disease). Br J Haematol. 1995;91:415–418.

    Article  CAS  PubMed  Google Scholar 

  42. Maric I, Pittaluga S, Dale JK, et al. Histologic features of sinus histiocytosis with massive lymphadenopathy in patients with autoimmune lymphoproliferative syndrome. Am J Surg Pathol. 2005;29:903-911.

    PubMed  Google Scholar 

  43. Olive C, Gatenby PA, Serjeantson SW. Restricted junctional diversity of T cell receptor delta gene rearrangements expressed in systemic lupus erythematosus (SLE) patients. Clin Exp Immunol. 1994;97(3):430–438.

    Article  CAS  PubMed  Google Scholar 

  44. Masuko-Hongo K, Kato T, Suzuki S, et al. Frequent clonal expansion of peripheral T cells in patients with autoimmune diseases: a novel detecting system possibly applicable to laboratory examination. J Clin Lab Anal. 1998;12(3):162–167.

    Article  CAS  PubMed  Google Scholar 

  45. Jordan R, Diss TC, Lench NJ, et al. Immunoglobulin gene rearrangements in lymphoplasmacytic infiltrates of labial salivary glands in Sjögren’s syndrome. A possible predictor of lymphoma development. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79:723–729.

    Article  CAS  PubMed  Google Scholar 

  46. Harris NL, Swerdlow SH. Methotrexate-associated lymphoproliferative disorders. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARC; 2001:270–271.

    Google Scholar 

  47. Paul C, Le Tourneau A, Cayuela JM, et al. Epstein–Barr virus-associated lymphoproliferative disease during methotrexate therapy for psoriasis. Arch Dermatol. 1997;133:867–871.

    Article  CAS  PubMed  Google Scholar 

  48. Abbondazo SL, Irey NS, Frizzera G. Dilantin-associated lymphadenopathy. Spectrum of histopathologic patterns. Am J Surg Pathol. 1995;19:675–686.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

O’Malley, D.P. (2010). Reactive Lymphadenopathies: Molecular Analysis. In: Dunphy, C. (eds) Molecular Pathology of Hematolymphoid Diseases. Molecular Pathology Library, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5698-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5698-9_43

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5697-2

  • Online ISBN: 978-1-4419-5698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics