Skip to main content

White Blood Cell and Immunodeficiency Disorders

  • Chapter
  • First Online:
Molecular Pathology of Hematolymphoid Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 4))

  • 1280 Accesses

Abstract

The human immune system comprises cellular and humoral elements that sense danger, and respond to threat in both nonspecific and antigen-specific ways that eliminate the offending agents and restore homeostasis. The innate immune system refers to those elements that recognize danger and activate the immune response. The cellular components of innate immunity include monocytes, dendritic cells, macrophages, mast cells, neutrophils, natural killer (NK) cells, and eosinophils. The humoral components include the complement proteins, C-reactive protein, and mannose lectin binding protein. In addition to activation of the immune system via cytokines and elaboration of effector molecules (such as interferons), some of the cells of the innate system process foreign antigen and present it to the adapative immune system. The adaptive immune system comprises the T and B cell compartments. Cytotoxic T cells kill infected cells; helper T cells provide support for the production of antibody by B cells; and regulatory T cells moderate the adaptive responses and prevent the emergence of autoimmunity. Primary immunodeficiencies derive from mutations in the genes involved in this elaborate host response. These mutations may occur at any phase of the immune response (i.e., from danger recognition to synthesis of high affinity antibody). The molecular consequences of these mutations lead to undue susceptibility to infection, autoimmunity, and, in some instances, malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garibyan L, Lobito AA, Siegel RM, Call ME, Wucherpfennig KW, Geha RS. Dominant-negative effect of the heterozygous C104R TACI mutation in common variable immunodeficiency (CVID). J Clin Invest. 2007;117(6):1550–1557.

    Article  CAS  PubMed  Google Scholar 

  2. Meechan DW, Maynard TM, Gopalakrishna D, Wu Y, LaMantia AS. When half is not enough: gene expression and dosage in the 22q11 deletion syndrome. Gene Expr. 2007;13(6):299–310.

    Article  CAS  PubMed  Google Scholar 

  3. Heyworth PG, Cross AR, Curnutte JT. Chronic granulomatous disease. Curr Opin Immunol. 2003;15(5):578–584.

    Article  CAS  PubMed  Google Scholar 

  4. Fischer A, Le Deist F, Hacein-Bey-Abina S, et al. Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunol Rev. 2005;203:98–109.

    Article  CAS  PubMed  Google Scholar 

  5. Sobacchi C, Marrella V, Rucci F, Vezzoni P, Villa A. RAG-dependent primary immunodeficiencies. Hum Mutat. 2006;27(12):1174–1184.

    Article  CAS  PubMed  Google Scholar 

  6. Geha RS, Notarangelo LD, Casanova JL, et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol. 2007;120(4):776–794.

    Article  PubMed  Google Scholar 

  7. Van De Wiele CJ, Vaughn JG, Blackburn MR, et al. Adenosine kinase inhibition promotes survival of fetal adenosine deaminase-deficient thymocytes by blocking dATP accumulation. J Clin Invest. 2002;110(3):395–402.

    Google Scholar 

  8. Kovanen PE, Leonard WJ. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev. 2004;202:67–83.

    Article  CAS  PubMed  Google Scholar 

  9. Vosshenrich CA, Ranson T, Samson SI, et al. Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J Immunol. 2005;174(3):1213–1221.

    CAS  PubMed  Google Scholar 

  10. Vosshenrich CA, Samson-Villeger SI, Di Santo JP. Distinguishing features of developing natural killer cells. Curr Opin Immunol. 2005;17(2):151–158.

    Article  CAS  PubMed  Google Scholar 

  11. Recio MJ, Moreno-Pelayo MA, Kilic SS, et al. Differential biological role of CD3 chains revealed by human immunodeficiencies. J Immunol. 2007;178(4):2556–2564.

    CAS  PubMed  Google Scholar 

  12. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 6th ed. Philadelphia: Saunders/Elsevier; 2007.

    Google Scholar 

  13. Cunningham-Rundles C, Ponda PP. Molecular defects in T- and B-cell primary immunodeficiency diseases. Nat Rev Immunol. 2005;5(11):880–892.

    Article  CAS  PubMed  Google Scholar 

  14. Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722–728.

    CAS  PubMed  Google Scholar 

  15. Vetrie D, Vorechovsky I, Sideras P, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361(6409):226–233.

    Article  CAS  PubMed  Google Scholar 

  16. Yel L, Minegishi Y, Coustan-Smith E, et al. Mutations in the mu heavy-chain gene in patients with agammaglobulinemia. N Engl J Med. 1996;335(20):1486–1493.

    Article  CAS  PubMed  Google Scholar 

  17. Minegishi Y, Coustan-Smith E, Wang YH, Cooper MD, Campana D, Conley ME. Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med. 1998;187(1):71–77.

    Article  CAS  PubMed  Google Scholar 

  18. Minegishi Y, Coustan-Smith E, Rapalus L, Ersoy F, Campana D, Conley ME. Mutations in Igalpha (CD79a) result in a complete block in B-cell development. J Clin Invest. 1999;104(8):1115–1121.

    Article  CAS  PubMed  Google Scholar 

  19. Minegishi Y, Rohrer J, Coustan-Smith E, et al. An essential role for BLNK in human B cell development. Science. 1999;286(5446):1954–1957.

    Article  CAS  PubMed  Google Scholar 

  20. Sawada A, Takihara Y, Kim JY, et al. A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans. J Clin Invest. 2003;112(11):1707–1713.

    CAS  PubMed  Google Scholar 

  21. Kenter AL. Class-switch recombination: after the dawn of AID. Curr Opin Immunol. 2003;15(2):190–198.

    Article  CAS  PubMed  Google Scholar 

  22. Papavasiliou FN, Schatz DG. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell. 2002;109(suppl):S35–S44.

    Article  CAS  PubMed  Google Scholar 

  23. Aruffo A, Farrington M, Hollenbaugh D, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993;72(2):291–300.

    Article  CAS  PubMed  Google Scholar 

  24. Ferrari S, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98(22):12614–12619.

    Article  CAS  PubMed  Google Scholar 

  25. Imai K, Slupphaug G, Lee WI, et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003;4(10):1023–1028.

    Article  CAS  PubMed  Google Scholar 

  26. Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565–575.

    Article  CAS  PubMed  Google Scholar 

  27. Knight AK, Cunningham-Rundles C. Inflammatory and autoimmune complications of common variable immune deficiency. Autoimmun Rev. 2006;5(2):156–159.

    Article  CAS  PubMed  Google Scholar 

  28. Vorechovsky I, Cullen M, Carrington M, Hammarstrom L, Webster AD. Fine mapping of IGAD1 in IgA deficiency and common variable immunodeficiency: identification and characterization of haplotypes shared by affected members of 101 multiple-case families. J Immunol. 2000;164(8):4408–4416.

    CAS  PubMed  Google Scholar 

  29. Wu Y, Bressette D, Carrell JA, et al. Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS. J Biol Chem. 2000;275(45):35478–35485.

    Article  CAS  PubMed  Google Scholar 

  30. Castigli E, Wilson SA, Garibyan L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829–834.

    Article  CAS  PubMed  Google Scholar 

  31. Salzer U, Chapel HM, Webster AD, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37(8):820–828.

    Article  CAS  PubMed  Google Scholar 

  32. van Zelm MC, Reisli I, van der Burg M, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354(18):1901–1912.

    Article  PubMed  Google Scholar 

  33. Losi CG, Silini A, Fiorini C, et al. Mutational analysis of human BAFF receptor TNFRSF13C (BAFF-R) in patients with common variable immunodeficiency. J Clin Immunol. 2005;25(5):496–502.

    Article  CAS  PubMed  Google Scholar 

  34. Farrington M, Grosmaire LS, Nonoyama S, et al. CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci U S A. 1994;91(3):1099–1103.

    Article  CAS  PubMed  Google Scholar 

  35. Kanegane H, Tsukada S, Iwata T, et al. Detection of Bruton’s tyrosine kinase mutations in hypogammaglobulinaemic males registered as common variable immunodeficiency (CVID) in the Japanese Immunodeficiency Registry. Clin Exp Immunol. 2000;120(3):512–517.

    Article  CAS  PubMed  Google Scholar 

  36. Morra M, Silander O, Calpe S, et al. Alterations of the X-linked lymphoproliferative disease gene SH2D1A in common variable immunodeficiency syndrome. Blood. 2001;98(5):1321–1325.

    Article  CAS  PubMed  Google Scholar 

  37. Spickett GP, Farrant J, North ME, Zhang JG, Morgan L, Webster AD. Common variable immunodeficiency: how many diseases? Immunol Today. 1997;18(7):325–328.

    Article  CAS  PubMed  Google Scholar 

  38. Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002;20:581–620.

    Article  CAS  PubMed  Google Scholar 

  39. Jouanguy E, Lamhamedi-Cherradi S, Lammas D, et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet. 1999;21(4):370–378.

    Article  CAS  PubMed  Google Scholar 

  40. Dorman SE, Holland SM. Interferon-gamma and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev. 2000;11(4):321–333.

    Article  CAS  PubMed  Google Scholar 

  41. Altare F, Durandy A, Lammas D, et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science. 1998;280(5368):1432–1435.

    Article  CAS  PubMed  Google Scholar 

  42. Picard C, Fieschi C, Altare F, et al. Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet. 2002;70(2):336–348.

    Article  CAS  PubMed  Google Scholar 

  43. Dupuis S, Dargemont C, Fieschi C, et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science. 2001;293(5528):300–303.

    Article  CAS  PubMed  Google Scholar 

  44. Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab. 2006;91(8):2843–2850.

    Article  CAS  PubMed  Google Scholar 

  45. Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298(5597):1395–1401.

    Article  CAS  PubMed  Google Scholar 

  46. Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D. The cellular mechanism of Aire control of T cell tolerance. Immunity. 2005;23(2):227–239.

    Article  CAS  PubMed  Google Scholar 

  47. Derbinski J, Gabler J, Brors B, et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med. 2005;202(1):33–45.

    Article  CAS  PubMed  Google Scholar 

  48. Powell BR, Buist NR, Stenzel P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr. 1982;100(5):731–737.

    Article  CAS  PubMed  Google Scholar 

  49. Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci U S A. 2005;102(14):5138–5143.

    Article  CAS  PubMed  Google Scholar 

  50. Hori S, Takahashi T, Sakaguchi S. Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol. 2003;81:331–371.

    Article  CAS  PubMed  Google Scholar 

  51. Chatila TA. Role of regulatory T cells in human diseases. J Allergy Clin Immunol. 2005;116(5):949–959. quiz 960.

    Article  CAS  PubMed  Google Scholar 

  52. Owen CJ, Jennings CE, Imrie H, et al. Mutational analysis of the FOXP3 gene and evidence for genetic heterogeneity in the immunodysregulation, polyendocrinopathy, enteropathy syndrome. J Clin Endocrinol Metab. 2003;88(12):6034–6039.

    Article  CAS  PubMed  Google Scholar 

  53. Prieur AM, Griscelli C, Lampert F, et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scand J Rheumatol Suppl. 1987;66:57–68.

    Article  CAS  PubMed  Google Scholar 

  54. Feldmann J, Prieur AM, Quartier P, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71(1):198–203.

    Article  CAS  PubMed  Google Scholar 

  55. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29(3):301–305.

    Article  CAS  PubMed  Google Scholar 

  56. Aksentijevich I, Nowak M, Mallah M, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 2002;46(12):3340–3348.

    Article  CAS  PubMed  Google Scholar 

  57. Schuster V, Kreth HW. X-linked lymphoproliferative disease is caused by deficiency of a novel SH2 domain-containing signal transduction adaptor protein. Immunol Rev. 2000;178:21–28.

    Article  CAS  PubMed  Google Scholar 

  58. Veillette A. Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol. 2006;6(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  59. Benoit L, Wang X, Pabst HF, Dutz J, Tan R. Defective NK cell activation in X-linked lymphoproliferative disease. J Immunol. 2000;165(7):3549–3553.

    CAS  PubMed  Google Scholar 

  60. Nakajima H, Cella M, Bouchon A, et al. Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur J Immunol. 2000;30(11):3309–3318.

    Article  CAS  PubMed  Google Scholar 

  61. Pasquier B, Yin L, Fondaneche MC, et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J Exp Med. 2005;201(5):695–701.

    Article  CAS  PubMed  Google Scholar 

  62. Tangye SG, Phillips JH, Lanier LL, Nichols KE. Functional requirement for SAP in 2B4–mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J Immunol. 2000;165(6):2932–2936.

    CAS  PubMed  Google Scholar 

  63. Worth A, Thrasher AJ, Gaspar HB. Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype. Br J Haematol. 2006;133(2):124–140.

    Article  CAS  PubMed  Google Scholar 

  64. Fisher GH, Rosenberg FJ, Straus SE, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81(6):935–946.

    Article  CAS  PubMed  Google Scholar 

  65. Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268(5215):1347–1349.

    Article  CAS  PubMed  Google Scholar 

  66. Le Deist F, Emile JF, Rieux-Laucat F, et al. Clinical, immunological, and pathological consequences of Fas-deficient conditions. Lancet. 1996;348(9029):719–723.

    Article  PubMed  Google Scholar 

  67. Chun HJ, Zheng L, Ahmad M, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 2002;419(6905):395–399.

    Article  CAS  PubMed  Google Scholar 

  68. Wang J, Zheng L, Lobito A, et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell. 1999;98(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  69. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest. 1996;98(5):1107–1113.

    Article  CAS  PubMed  Google Scholar 

  70. Reeves EP, Lu H, Jacobs HL, et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. 2002;416(6878):291–297.

    Article  CAS  PubMed  Google Scholar 

  71. Segal BH, Kuhns DB, Ding L, Gallin JI, Holland SM. Thioglycollate peritonitis in mice lacking C5, 5–lipoxygenase, or p47(phox): complement, leukotrienes, and reactive oxidants in acute inflammation. J Leukoc Biol. 2002;71(3):410–416.

    CAS  PubMed  Google Scholar 

  72. Malech HL, Hickstein DD. Genetics, biology and clinical management of myeloid cell primary immune deficiencies: chronic granulomatous disease and leukocyte adhesion deficiency. Curr Opin Hematol. 2007;14(1):29–36.

    Article  PubMed  Google Scholar 

  73. Helmus Y, Denecke J, Yakubenia S, et al. Leukocyte adhesion deficiency II patients with a dual defect of the GDP-fucose transporter. Blood. 2006;107(10):3959–3966.

    Article  CAS  PubMed  Google Scholar 

  74. Luhn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet. 2001;28(1):69–72.

    Article  CAS  PubMed  Google Scholar 

  75. Ambruso DR, Knall C, Abell AN, et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A. 2000;97(9):4654–4659.

    Article  CAS  PubMed  Google Scholar 

  76. Williams DA, Tao W, Yang F, et al. Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood. 2000;96(5):1646–1654.

    CAS  PubMed  Google Scholar 

  77. Abdel-Latif D, Steward M, Macdonald DL, Francis GA, Dinauer MC, Lacy P. Rac2 is critical for neutrophil primary granule exocytosis. Blood. 2004;104(3):832–839.

    Article  CAS  PubMed  Google Scholar 

  78. Halford WP, Maender JL, Gebhardt BM. Re-evaluating the role of natural killer cells in innate resistance to herpes simplex virus type 1. Virol J. 2005;2:56.

    Article  PubMed  Google Scholar 

  79. Vollstedt S, Arnold S, Schwerdel C, et al. Interplay between alpha/beta and gamma interferons with B, T, and natural killer cells in the defense against herpes simplex virus type 1. J Virol. 2004;78(8):3846–3850.

    Article  CAS  PubMed  Google Scholar 

  80. Vollstedt S, Franchini M, Alber G, Ackermann M, Suter M. Interleukin-12– and gamma interferon-dependent innate immunity are essential and sufficient for long-term survival of passively immunized mice infected with herpes simplex virus type 1. J Virol. 2001;75(20):9596–9600.

    Article  CAS  PubMed  Google Scholar 

  81. Zawatzky R, Gresser I, DeMaeyer E, Kirchner H. The role of interferon in the resistance of C57BL/6 mice to various doses of herpes simplex virus type 1. J Infect Dis. 1982;146(3):405–410.

    CAS  PubMed  Google Scholar 

  82. Niehues T, Reichenbach J, Neubert J, et al. Nuclear factor kappaB essential modulator-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J Allergy Clin Immunol. 2004;114(6):1456–1462.

    Article  PubMed  Google Scholar 

  83. Puel A, Reichenbach J, Bustamante J, et al. The NEMO mutation creating the most-upstream premature stop codon is hypomorphic because of a reinitiation of translation. Am J Hum Genet. 2006;78(4):691–701.

    Article  CAS  PubMed  Google Scholar 

  84. Casrouge A, Zhang SY, Eidenschenk C, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science. 2006;314(5797):308–312.

    Article  CAS  PubMed  Google Scholar 

  85. Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim YM. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol. 2007;177(2):265–275.

    Article  CAS  PubMed  Google Scholar 

  86. Yang K, Puel A, Zhang S, et al. Human TLR-7–, -8–, and -9–mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity. 2005;23(5):465–478.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–1527.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bastian, J.F., Hernandez, M. (2010). White Blood Cell and Immunodeficiency Disorders. In: Dunphy, C. (eds) Molecular Pathology of Hematolymphoid Diseases. Molecular Pathology Library, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5698-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5698-9_38

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5697-2

  • Online ISBN: 978-1-4419-5698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics