Skip to main content

Acute Myeloid Leukemia with Myelodysplasia-Related Changes and Therapy-Related Acute Myeloid Leukemia

  • Chapter
  • First Online:
  • 1289 Accesses

Part of the book series: Molecular Pathology Library ((MPLB,volume 4))

Abstract

Acute myeloid leukemia (AML) is a heterogeneous clonal malignant disorder resulting from genetic alterations in multipotent hematopoietic stem cells. These alterations limit the ability of stem cells to differentiate into erythrocytes, granulocytes, and platelets and lead to the proliferation of leukemic cells or blasts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–743.

    Article  CAS  PubMed  Google Scholar 

  2. Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005;15:494–501.

    Article  CAS  PubMed  Google Scholar 

  3. Brunning RD, Matutes E, Harris NL, et al. Acute myeloid leukemia. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001:75–107.

    Google Scholar 

  4. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100:2292–2302.

    Article  CAS  PubMed  Google Scholar 

  5. Ries LAG, Melbert D, Krpacho D, et al. SEER Cancer Statistics Review, 1975–2004. Based on November 2006 SEER data submission, posted to the SEER Web site 2007. Bethesda, MD: National Cancer Institute. Available at: http://seer.cancer.gov/csr/1975_2004/

  6. Hernandez JA, Land KJ, McKenna RW. Leukemias, myeloma, and other lymphoreticular neoplasms. Cancer. 1995;75:381–394.

    Article  CAS  PubMed  Google Scholar 

  7. Linet MS, Devesa SS. Epidemiology of leukemia: overview and patterns of Epidemiology of leukemia: overview and patterns of occurrence. In: Henderson ES, Lister TA, Greaves MF, eds. Leukemia. Philadelphia: WB Saunders; 2002:131–151.

    Google Scholar 

  8. Kinlen LJ. Leukaemia. Cancer Surv. 1994;19–20:475–491.

    PubMed  Google Scholar 

  9. Warner JK, Wang JC, Takenaka K, et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia. 2005;19:1794–1805.

    Article  CAS  PubMed  Google Scholar 

  10. Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–198.

    Article  CAS  PubMed  Google Scholar 

  11. Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103:620–625.

    CAS  PubMed  Google Scholar 

  12. Vardiman JW, Brunning RD, Arber DA, et al. Introduction and overview of the classification of the myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon, France: IARC Press; 2008:18–30.

    Google Scholar 

  13. Arber DA, Brunning RD, Orazi A, et al. Acute myeloid leukemia with myelodysplasia-related changes. In: Swerdlow SH, Campo E, Harris NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008:124–126.

    Google Scholar 

  14. Vardiman JW, Arber DA, Brunning RD, et al. Therapy-related myeloid neoplasms. In: Jaffe ES, Harris NL, Stein H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2001:127–129.

    Google Scholar 

  15. Wandt H, Schakel U, Kroschinsky F, et al. MLD according to the WHO classification in AML has no correlation with age and no independent prognostic relevance as analyzed in 1766 patients. Blood. 2008;111:1855–1861.

    Article  CAS  PubMed  Google Scholar 

  16. Haferlach T, Schoch C, Loffler H, et al. Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML Cooperative Group studies. J Clin Oncol. 2003;21:256–265.

    Article  PubMed  Google Scholar 

  17. Arber DA, Chang KL, Lyda MH, et al. Detection of NPM/MLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia. Hum Pathol. 2003;34:809–813.

    Article  CAS  PubMed  Google Scholar 

  18. Bacher U, Haferlach T, Kern W, et al. A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica. 2007;92:744–752.

    Article  CAS  PubMed  Google Scholar 

  19. Oki Y, Kantarjian HM, Zhou X, et al. Adult acute megakaryocytic leukemia: an analysis of 37 patients treated at MD Anderson Cancer Center. Blood. 2006;107:880–884.

    Article  CAS  PubMed  Google Scholar 

  20. Arber DA, Brunning RD, Orazi A, et al. Acute myeloid leukemia with myelodysplasia-related changes. In: Swerdlow SH, Campo E, Harris NL, et al., eds. World Health Organization (WHO) classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 2008:124–126.

    Google Scholar 

  21. Smith SM, Le Beau MM, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102:43–52.

    Article  CAS  PubMed  Google Scholar 

  22. Guillem V, Tormo M. Influence of DNA damage and repair upon the risk of treatment related leukemia. Leuk Lymphoma. 2008;49:204–217.

    Article  CAS  PubMed  Google Scholar 

  23. Kato H, Brown CC, Hoel DG, et al. Studies of the mortality of A-bomb survivors. Report 7. Mortality, 1950–1978: Part II. Mortality from causes other than cancer and mortality in early entrants. Radiat Res. 1982;91:243–264.

    Article  CAS  PubMed  Google Scholar 

  24. Kodama K, Mabuchi K, Shigematsu I. A long-term cohort study of the atomic-bomb survivors. J Epidemiol. 1996;6:S95–S105.

    CAS  PubMed  Google Scholar 

  25. Vardiman JW, Arber DA, Brunning RD, et al. Therapy-related myeloid neoplasms. In: Jaffe ES, Harris NL, Stein H, et al., eds. World Health Organization (WHO) classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 2008:127–129.

    Google Scholar 

  26. Ellis M, Ravid M, Lishner M. A comparative analysis of alkylating agent and epipodophyllotoxin-related leukemias. Leuk Lymphoma. 1993;11:9–13.

    Article  CAS  PubMed  Google Scholar 

  27. Michels SD, McKenna RW, Arthur DC, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndrome: a clinical and morphologic study of 65 cases. Blood. 1985;65:1364–1372.

    CAS  PubMed  Google Scholar 

  28. Pui CH, Relling MV, Rivera GK, et al. Epipodophyllotoxin-related acute myeloid leukemia: a study of 35 cases. Leukemia. 1995;9:1990–1996.

    CAS  PubMed  Google Scholar 

  29. Mills PK, Newell GR, Beeson WL, et al. History of cigarette smoking and risk of leukemia and myeloma: results from the Adventist health study. J Natl Cancer Inst. 1990;82:1832–1836.

    CAS  PubMed  Google Scholar 

  30. Sullivan A. Classification, pathogenesis, and etiology of neoplastic diseases of the hematopoietic system. In: Lee GR, Bithell TC, Foerster J, et al., eds. Wintrobe’s clinical hematology. Philadelphia: Lea & Febiger; 1993:1725–1791.

    Google Scholar 

  31. Konoplev S, Bueso-Ramos CE. Advances in the pathologic diagnosis and biology of acute myeloid leukemia. Ann Diagn Pathol. 2006;10:39–65.

    PubMed  Google Scholar 

  32. Wells DA, Benesch M, Loken MR, et al. Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood. 2003;102:394–403.

    Article  CAS  PubMed  Google Scholar 

  33. Scott BL, Wells DA, Loken MR, et al. Validation of a flow cytometric scoring system as a prognostic indicator for posttransplantation outcome in patients with myelodysplastic syndrome. Blood. 2008;112:2681–2686.

    Article  CAS  PubMed  Google Scholar 

  34. van de Loosdrecht AA, Westers TM, Westra AH, et al. Identification of distinct prognostic subgroups in low- and intermediate-1-risk myelodysplastic syndromes by flow cytometry. Blood. 2008;111:1067–1077.

    Article  PubMed  Google Scholar 

  35. Pedersen-Bjergaard J, Andersen MK, Christiansen DH, et al. Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia. Blood. 2002;99:1909–1912.

    Article  CAS  PubMed  Google Scholar 

  36. Pedersen-Bjergaard J, Christiansen DH, Desta F, et al. Alternative genetic pathways and cooperating genetic abnormalities in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2006;20:1943–1949.

    Article  CAS  PubMed  Google Scholar 

  37. Pedersen-Bjergaard J, Andersen MT, Andersen MK. Genetic pathways in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2007;2007:392–397.

    Google Scholar 

  38. Pedersen-Bjergaard J, Andersen MK, Andersen MT, et al. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22:240–248.

    Article  CAS  PubMed  Google Scholar 

  39. Bernasconi P. Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions – a review. Br J Haematol. 2008;142:695–708.

    Article  CAS  PubMed  Google Scholar 

  40. Ellis NA, Huo D, Yildiz O, et al. MDM2 SNP309 and TP53 Arg72Pro interact to alter therapy-related acute myeloid leukemia susceptibility. Blood. 2008;112:741–749.

    Article  CAS  PubMed  Google Scholar 

  41. Bueso-Ramos CE, Yang Y, Leon E, et al. The human MDM-2 oncogene is overexpressed in leukemias. Blood. 1993;82:2617–2623.

    CAS  PubMed  Google Scholar 

  42. Bueso-Ramos CE, Rocha FC, Shishodia S, et al. Expression of constitutively active nuclear-kappa B RelA transcription factor in blasts of acute myeloid leukemia. Hum Pathol. 2004;35:246–253.

    Article  CAS  PubMed  Google Scholar 

  43. Braun BS, Archard JA, Van Ziffle JA, et al. Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo. Blood. 2006;108:2041–2044.

    Article  CAS  PubMed  Google Scholar 

  44. Kerbauy DM, Lesnikov V, Abbasi N, et al. NF-kappaB and FLIP in arsenic trioxide (ATO)-induced apoptosis in myelodysplastic syndromes (MDSs). Blood. 2005;106:3917–3925.

    Article  CAS  PubMed  Google Scholar 

  45. Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–2307.

    Article  CAS  PubMed  Google Scholar 

  46. Grosjean-Raillard J, Ades L, Boehrer S, et al. Flt3 receptor inhibition reduces constitutive NFkappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Apoptosis. 2008;13:1148–1161.

    Article  CAS  PubMed  Google Scholar 

  47. Liu S, Liu Z, Xie Z, et al. Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-kappaB-dependent DNA methyltransferase activity in acute myeloid leukemia. Blood. 2008;111:2364–2373.

    Article  CAS  PubMed  Google Scholar 

  48. Haferlach T, Kohlmann A, Schnittger S, et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood. 2005;106:1189–1198.

    Article  CAS  PubMed  Google Scholar 

  49. Qian Z, Fernald AA, Godley LA, et al. Expression profiling of CD34+ hematopoietic stem/progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci U S A. 2002;99:14925–14930.

    Article  CAS  PubMed  Google Scholar 

  50. Tsutsumi C, Ueda M, Miyazaki Y, et al. DNA microarray analysis of dysplastic morphology associated with acute myeloid leukemia. Exp Hematol. 2004;32:828–835.

    Article  CAS  PubMed  Google Scholar 

  51. Garzon R, Croce CM. MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol. 2008;15:352–358.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. Am J Pathol. 2007;171:728–738.

    Article  CAS  PubMed  Google Scholar 

  53. Fabbri M, Garzon R, Andreeff M, et al. MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia. 2008;22:1095–1105.

    Article  CAS  PubMed  Google Scholar 

  54. Debernardi S, Skoulakis S, Molloy G, et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia. 2007;21:912–916.

    CAS  PubMed  Google Scholar 

  55. Marcucci G, Radmacher MD, Maharry K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1919–1928.

    Article  CAS  PubMed  Google Scholar 

  56. Nervi C, Fazi F, Grignani F. Oncoproteins, heterochromatin silencing and microRNAs: a new link for leukemogenesis. Epigenetics. 2008;3:1–4.

    Article  PubMed  Google Scholar 

  57. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–692.

    Article  CAS  PubMed  Google Scholar 

  58. Toyota M, Issa JP. Epigenetic changes in solid and hematopoietic tumors. Semin Oncol. 2005;32:521–530.

    Article  CAS  PubMed  Google Scholar 

  59. Herman JG, Jen J, Merlo A, et al. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 1996;56:722–727.

    CAS  PubMed  Google Scholar 

  60. Corn PG, Kuerbitz SJ, van Noesel MM, et al. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Res. 1999;59:3352–3356.

    CAS  PubMed  Google Scholar 

  61. Kikuchi T, Toyota M, Itoh F, et al. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene. 2002;21:2741–2749.

    Article  CAS  PubMed  Google Scholar 

  62. Shen L, Toyota M, Kondo Y, et al. Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. Blood. 2003;101:4131–4136.

    Article  CAS  PubMed  Google Scholar 

  63. Scardocci A, Guidi F, D’Alo F, et al. Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia. Br J Cancer. 2006;95:1108–1113.

    Article  CAS  PubMed  Google Scholar 

  64. Furukawa Y, Sutheesophon K, Wada T, et al. Methylation silencing of the Apaf-1 gene in acute leukemia. Mol Cancer Res. 2005;3:325–334.

    Article  CAS  PubMed  Google Scholar 

  65. Murai M, Toyota M, Satoh A, et al. Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br J Cancer. 2005;92:1165–1172.

    Article  CAS  PubMed  Google Scholar 

  66. Issa JP, Zehnbauer BA, Civin CI, et al. The estrogen receptor CpG island is methylated in most hematopoietic neoplasms. Cancer Res. 1996;56:973–977.

    CAS  PubMed  Google Scholar 

  67. Liu ZJ, Zhang XB, Zhang Y, et al. Progesterone receptor gene inactivation and CpG island hypermethylation in human leukemia cancer cells. FEBS Lett. 2004;567:327–332.

    Article  CAS  PubMed  Google Scholar 

  68. Rethmeier A, Aggerholm A, Olesen LH, et al. Promoter hypermethylation of the retinoic acid receptor beta2 gene is frequent in acute myeloid leukaemia and associated with the presence of CBFbeta-MYH11 fusion transcripts. Br J Haematol. 2006;133:276–283.

    Article  CAS  PubMed  Google Scholar 

  69. Agrawal S, Hofmann WK, Tidow N, et al. The C/EBP{delta} tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood. 2007;109(9):3895–3905.

    Article  CAS  PubMed  Google Scholar 

  70. Roman-Gomez J, Castillejo JA, Jimenez A, et al. Cadherin-13, a mediator of calcium-dependent cell-cell adhesion, is silenced by methylation in chronic myeloid leukemia and correlates with pretreatment risk profile and cytogenetic response to interferon alfa. J Clin Oncol. 2003;21:1472–1479.

    Article  CAS  PubMed  Google Scholar 

  71. Toyota M, Kopecky KJ, Toyota MO, et al. Methylation profiling in acute myeloid leukemia. Blood. 2001;97:2823–2829.

    Article  CAS  PubMed  Google Scholar 

  72. Youssef EM, Chen XQ, Higuchi E, et al. Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Res. 2004;64:2411–2417.

    Article  CAS  PubMed  Google Scholar 

  73. Boumber YA, Kondo Y, Chen X, et al. RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. Cancer Res. 2007;67:1997–2005.

    Article  CAS  PubMed  Google Scholar 

  74. Plass C, Oakes C, Blum W, et al. Epigenetics in acute myeloid leukemia. Semin Oncol. 2008;35:378–387.

    Article  CAS  PubMed  Google Scholar 

  75. Kroeger H, Jelinek J, Estecio MR, et al. Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. Blood. 2008;112:1366–1373.

    Article  CAS  PubMed  Google Scholar 

  76. Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007;109:52–57.

    Article  CAS  PubMed  Google Scholar 

  77. Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4:988–993.

    Article  CAS  PubMed  Google Scholar 

  78. Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J Clin Oncol. 2005;23:7043–7049.

    Article  CAS  PubMed  Google Scholar 

  79. Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. CpG island methylator phenotype redefines the prognostic effect of t(12;21) in childhood acute lymphoblastic leukemia. Clin Cancer Res. 2006;12:4845–4850.

    Article  CAS  PubMed  Google Scholar 

  80. Grovdal M, Khan R, Aggerholm A, et al. Negative effect of DNA hypermethylation on the outcome of intensive chemotherapy in older patients with high-risk myelodysplastic syndromes and acute myeloid leukemia following myelodysplastic syndrome. Clin Cancer Res. 2007;13:7107–7112.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kimberly J.T. Herrick for her accurate and helpful editorial suggestions and La Kisha Rodgers and Geneva Williams for their secretarial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Konoplev, S.N., Bueso-Ramos, C.E. (2010). Acute Myeloid Leukemia with Myelodysplasia-Related Changes and Therapy-Related Acute Myeloid Leukemia. In: Dunphy, C. (eds) Molecular Pathology of Hematolymphoid Diseases. Molecular Pathology Library, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5698-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5698-9_36

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5697-2

  • Online ISBN: 978-1-4419-5698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics