Advertisement

Acute Myeloid Leukemia with Myelodysplasia-Related Changes and Therapy-Related Acute Myeloid Leukemia

  • Sergej N. Konoplev
  • Carlos E. Bueso-Ramos
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 4)

Abstract

Acute myeloid leukemia (AML) is a heterogeneous clonal malignant disorder resulting from genetic alterations in multipotent hematopoietic stem cells. These alterations limit the ability of stem cells to differentiate into erythrocytes, granulocytes, and platelets and lead to the proliferation of leukemic cells or blasts.

Keywords

Acute Myeloid Leukemia Leukemia Stem Cell Multilineage Dysplasia Acute Monocytic Leukemia Normal Hematopoietic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Kimberly J.T. Herrick for her accurate and helpful editorial suggestions and La Kisha Rodgers and Geneva Williams for their secretarial support.

References

  1. 1.
    Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–743.CrossRefPubMedGoogle Scholar
  2. 2.
    Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005;15:494–501.CrossRefPubMedGoogle Scholar
  3. 3.
    Brunning RD, Matutes E, Harris NL, et al. Acute myeloid leukemia. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumors of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2001:75–107.Google Scholar
  4. 4.
    Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100:2292–2302.CrossRefPubMedGoogle Scholar
  5. 5.
    Ries LAG, Melbert D, Krpacho D, et al. SEER Cancer Statistics Review, 1975–2004. Based on November 2006 SEER data submission, posted to the SEER Web site 2007. Bethesda, MD: National Cancer Institute. Available at: http://seer.cancer.gov/csr/1975_2004/
  6. 6.
    Hernandez JA, Land KJ, McKenna RW. Leukemias, myeloma, and other lymphoreticular neoplasms. Cancer. 1995;75:381–394.CrossRefPubMedGoogle Scholar
  7. 7.
    Linet MS, Devesa SS. Epidemiology of leukemia: overview and patterns of Epidemiology of leukemia: overview and patterns of occurrence. In: Henderson ES, Lister TA, Greaves MF, eds. Leukemia. Philadelphia: WB Saunders; 2002:131–151.Google Scholar
  8. 8.
    Kinlen LJ. Leukaemia. Cancer Surv. 1994;19–20:475–491.PubMedGoogle Scholar
  9. 9.
    Warner JK, Wang JC, Takenaka K, et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia. 2005;19:1794–1805.CrossRefPubMedGoogle Scholar
  10. 10.
    Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–198.CrossRefPubMedGoogle Scholar
  11. 11.
    Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103:620–625.PubMedGoogle Scholar
  12. 12.
    Vardiman JW, Brunning RD, Arber DA, et al. Introduction and overview of the classification of the myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon, France: IARC Press; 2008:18–30.Google Scholar
  13. 13.
    Arber DA, Brunning RD, Orazi A, et al. Acute myeloid leukemia with myelodysplasia-related changes. In: Swerdlow SH, Campo E, Harris NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008:124–126.Google Scholar
  14. 14.
    Vardiman JW, Arber DA, Brunning RD, et al. Therapy-related myeloid neoplasms. In: Jaffe ES, Harris NL, Stein H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2001:127–129.Google Scholar
  15. 15.
    Wandt H, Schakel U, Kroschinsky F, et al. MLD according to the WHO classification in AML has no correlation with age and no independent prognostic relevance as analyzed in 1766 patients. Blood. 2008;111:1855–1861.CrossRefPubMedGoogle Scholar
  16. 16.
    Haferlach T, Schoch C, Loffler H, et al. Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML Cooperative Group studies. J Clin Oncol. 2003;21:256–265.CrossRefPubMedGoogle Scholar
  17. 17.
    Arber DA, Chang KL, Lyda MH, et al. Detection of NPM/MLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia. Hum Pathol. 2003;34:809–813.CrossRefPubMedGoogle Scholar
  18. 18.
    Bacher U, Haferlach T, Kern W, et al. A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica. 2007;92:744–752.CrossRefPubMedGoogle Scholar
  19. 19.
    Oki Y, Kantarjian HM, Zhou X, et al. Adult acute megakaryocytic leukemia: an analysis of 37 patients treated at MD Anderson Cancer Center. Blood. 2006;107:880–884.CrossRefPubMedGoogle Scholar
  20. 20.
    Arber DA, Brunning RD, Orazi A, et al. Acute myeloid leukemia with myelodysplasia-related changes. In: Swerdlow SH, Campo E, Harris NL, et al., eds. World Health Organization (WHO) classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 2008:124–126.Google Scholar
  21. 21.
    Smith SM, Le Beau MM, Huo D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102:43–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Guillem V, Tormo M. Influence of DNA damage and repair upon the risk of treatment related leukemia. Leuk Lymphoma. 2008;49:204–217.CrossRefPubMedGoogle Scholar
  23. 23.
    Kato H, Brown CC, Hoel DG, et al. Studies of the mortality of A-bomb survivors. Report 7. Mortality, 1950–1978: Part II. Mortality from causes other than cancer and mortality in early entrants. Radiat Res. 1982;91:243–264.CrossRefPubMedGoogle Scholar
  24. 24.
    Kodama K, Mabuchi K, Shigematsu I. A long-term cohort study of the atomic-bomb survivors. J Epidemiol. 1996;6:S95–S105.PubMedGoogle Scholar
  25. 25.
    Vardiman JW, Arber DA, Brunning RD, et al. Therapy-related myeloid neoplasms. In: Jaffe ES, Harris NL, Stein H, et al., eds. World Health Organization (WHO) classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 2008:127–129.Google Scholar
  26. 26.
    Ellis M, Ravid M, Lishner M. A comparative analysis of alkylating agent and epipodophyllotoxin-related leukemias. Leuk Lymphoma. 1993;11:9–13.CrossRefPubMedGoogle Scholar
  27. 27.
    Michels SD, McKenna RW, Arthur DC, et al. Therapy-related acute myeloid leukemia and myelodysplastic syndrome: a clinical and morphologic study of 65 cases. Blood. 1985;65:1364–1372.PubMedGoogle Scholar
  28. 28.
    Pui CH, Relling MV, Rivera GK, et al. Epipodophyllotoxin-related acute myeloid leukemia: a study of 35 cases. Leukemia. 1995;9:1990–1996.PubMedGoogle Scholar
  29. 29.
    Mills PK, Newell GR, Beeson WL, et al. History of cigarette smoking and risk of leukemia and myeloma: results from the Adventist health study. J Natl Cancer Inst. 1990;82:1832–1836.PubMedGoogle Scholar
  30. 30.
    Sullivan A. Classification, pathogenesis, and etiology of neoplastic diseases of the hematopoietic system. In: Lee GR, Bithell TC, Foerster J, et al., eds. Wintrobe’s clinical hematology. Philadelphia: Lea & Febiger; 1993:1725–1791.Google Scholar
  31. 31.
    Konoplev S, Bueso-Ramos CE. Advances in the pathologic diagnosis and biology of acute myeloid leukemia. Ann Diagn Pathol. 2006;10:39–65.PubMedGoogle Scholar
  32. 32.
    Wells DA, Benesch M, Loken MR, et al. Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood. 2003;102:394–403.CrossRefPubMedGoogle Scholar
  33. 33.
    Scott BL, Wells DA, Loken MR, et al. Validation of a flow cytometric scoring system as a prognostic indicator for posttransplantation outcome in patients with myelodysplastic syndrome. Blood. 2008;112:2681–2686.CrossRefPubMedGoogle Scholar
  34. 34.
    van de Loosdrecht AA, Westers TM, Westra AH, et al. Identification of distinct prognostic subgroups in low- and intermediate-1-risk myelodysplastic syndromes by flow cytometry. Blood. 2008;111:1067–1077.CrossRefPubMedGoogle Scholar
  35. 35.
    Pedersen-Bjergaard J, Andersen MK, Christiansen DH, et al. Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia. Blood. 2002;99:1909–1912.CrossRefPubMedGoogle Scholar
  36. 36.
    Pedersen-Bjergaard J, Christiansen DH, Desta F, et al. Alternative genetic pathways and cooperating genetic abnormalities in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2006;20:1943–1949.CrossRefPubMedGoogle Scholar
  37. 37.
    Pedersen-Bjergaard J, Andersen MT, Andersen MK. Genetic pathways in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2007;2007:392–397.Google Scholar
  38. 38.
    Pedersen-Bjergaard J, Andersen MK, Andersen MT, et al. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22:240–248.CrossRefPubMedGoogle Scholar
  39. 39.
    Bernasconi P. Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions – a review. Br J Haematol. 2008;142:695–708.CrossRefPubMedGoogle Scholar
  40. 40.
    Ellis NA, Huo D, Yildiz O, et al. MDM2 SNP309 and TP53 Arg72Pro interact to alter therapy-related acute myeloid leukemia susceptibility. Blood. 2008;112:741–749.CrossRefPubMedGoogle Scholar
  41. 41.
    Bueso-Ramos CE, Yang Y, Leon E, et al. The human MDM-2 oncogene is overexpressed in leukemias. Blood. 1993;82:2617–2623.PubMedGoogle Scholar
  42. 42.
    Bueso-Ramos CE, Rocha FC, Shishodia S, et al. Expression of constitutively active nuclear-kappa B RelA transcription factor in blasts of acute myeloid leukemia. Hum Pathol. 2004;35:246–253.CrossRefPubMedGoogle Scholar
  43. 43.
    Braun BS, Archard JA, Van Ziffle JA, et al. Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo. Blood. 2006;108:2041–2044.CrossRefPubMedGoogle Scholar
  44. 44.
    Kerbauy DM, Lesnikov V, Abbasi N, et al. NF-kappaB and FLIP in arsenic trioxide (ATO)-induced apoptosis in myelodysplastic syndromes (MDSs). Blood. 2005;106:3917–3925.CrossRefPubMedGoogle Scholar
  45. 45.
    Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–2307.CrossRefPubMedGoogle Scholar
  46. 46.
    Grosjean-Raillard J, Ades L, Boehrer S, et al. Flt3 receptor inhibition reduces constitutive NFkappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Apoptosis. 2008;13:1148–1161.CrossRefPubMedGoogle Scholar
  47. 47.
    Liu S, Liu Z, Xie Z, et al. Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-kappaB-dependent DNA methyltransferase activity in acute myeloid leukemia. Blood. 2008;111:2364–2373.CrossRefPubMedGoogle Scholar
  48. 48.
    Haferlach T, Kohlmann A, Schnittger S, et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood. 2005;106:1189–1198.CrossRefPubMedGoogle Scholar
  49. 49.
    Qian Z, Fernald AA, Godley LA, et al. Expression profiling of CD34+ hematopoietic stem/progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci U S A. 2002;99:14925–14930.CrossRefPubMedGoogle Scholar
  50. 50.
    Tsutsumi C, Ueda M, Miyazaki Y, et al. DNA microarray analysis of dysplastic morphology associated with acute myeloid leukemia. Exp Hematol. 2004;32:828–835.CrossRefPubMedGoogle Scholar
  51. 51.
    Garzon R, Croce CM. MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol. 2008;15:352–358.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. Am J Pathol. 2007;171:728–738.CrossRefPubMedGoogle Scholar
  53. 53.
    Fabbri M, Garzon R, Andreeff M, et al. MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia. 2008;22:1095–1105.CrossRefPubMedGoogle Scholar
  54. 54.
    Debernardi S, Skoulakis S, Molloy G, et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia. 2007;21:912–916.PubMedGoogle Scholar
  55. 55.
    Marcucci G, Radmacher MD, Maharry K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1919–1928.CrossRefPubMedGoogle Scholar
  56. 56.
    Nervi C, Fazi F, Grignani F. Oncoproteins, heterochromatin silencing and microRNAs: a new link for leukemogenesis. Epigenetics. 2008;3:1–4.CrossRefPubMedGoogle Scholar
  57. 57.
    Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–692.CrossRefPubMedGoogle Scholar
  58. 58.
    Toyota M, Issa JP. Epigenetic changes in solid and hematopoietic tumors. Semin Oncol. 2005;32:521–530.CrossRefPubMedGoogle Scholar
  59. 59.
    Herman JG, Jen J, Merlo A, et al. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 1996;56:722–727.PubMedGoogle Scholar
  60. 60.
    Corn PG, Kuerbitz SJ, van Noesel MM, et al. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Res. 1999;59:3352–3356.PubMedGoogle Scholar
  61. 61.
    Kikuchi T, Toyota M, Itoh F, et al. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene. 2002;21:2741–2749.CrossRefPubMedGoogle Scholar
  62. 62.
    Shen L, Toyota M, Kondo Y, et al. Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. Blood. 2003;101:4131–4136.CrossRefPubMedGoogle Scholar
  63. 63.
    Scardocci A, Guidi F, D’Alo F, et al. Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia. Br J Cancer. 2006;95:1108–1113.CrossRefPubMedGoogle Scholar
  64. 64.
    Furukawa Y, Sutheesophon K, Wada T, et al. Methylation silencing of the Apaf-1 gene in acute leukemia. Mol Cancer Res. 2005;3:325–334.CrossRefPubMedGoogle Scholar
  65. 65.
    Murai M, Toyota M, Satoh A, et al. Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. Br J Cancer. 2005;92:1165–1172.CrossRefPubMedGoogle Scholar
  66. 66.
    Issa JP, Zehnbauer BA, Civin CI, et al. The estrogen receptor CpG island is methylated in most hematopoietic neoplasms. Cancer Res. 1996;56:973–977.PubMedGoogle Scholar
  67. 67.
    Liu ZJ, Zhang XB, Zhang Y, et al. Progesterone receptor gene inactivation and CpG island hypermethylation in human leukemia cancer cells. FEBS Lett. 2004;567:327–332.CrossRefPubMedGoogle Scholar
  68. 68.
    Rethmeier A, Aggerholm A, Olesen LH, et al. Promoter hypermethylation of the retinoic acid receptor beta2 gene is frequent in acute myeloid leukaemia and associated with the presence of CBFbeta-MYH11 fusion transcripts. Br J Haematol. 2006;133:276–283.CrossRefPubMedGoogle Scholar
  69. 69.
    Agrawal S, Hofmann WK, Tidow N, et al. The C/EBP{delta} tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood. 2007;109(9):3895–3905.CrossRefPubMedGoogle Scholar
  70. 70.
    Roman-Gomez J, Castillejo JA, Jimenez A, et al. Cadherin-13, a mediator of calcium-dependent cell-cell adhesion, is silenced by methylation in chronic myeloid leukemia and correlates with pretreatment risk profile and cytogenetic response to interferon alfa. J Clin Oncol. 2003;21:1472–1479.CrossRefPubMedGoogle Scholar
  71. 71.
    Toyota M, Kopecky KJ, Toyota MO, et al. Methylation profiling in acute myeloid leukemia. Blood. 2001;97:2823–2829.CrossRefPubMedGoogle Scholar
  72. 72.
    Youssef EM, Chen XQ, Higuchi E, et al. Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Res. 2004;64:2411–2417.CrossRefPubMedGoogle Scholar
  73. 73.
    Boumber YA, Kondo Y, Chen X, et al. RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. Cancer Res. 2007;67:1997–2005.CrossRefPubMedGoogle Scholar
  74. 74.
    Plass C, Oakes C, Blum W, et al. Epigenetics in acute myeloid leukemia. Semin Oncol. 2008;35:378–387.CrossRefPubMedGoogle Scholar
  75. 75.
    Kroeger H, Jelinek J, Estecio MR, et al. Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. Blood. 2008;112:1366–1373.CrossRefPubMedGoogle Scholar
  76. 76.
    Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007;109:52–57.CrossRefPubMedGoogle Scholar
  77. 77.
    Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4:988–993.CrossRefPubMedGoogle Scholar
  78. 78.
    Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J Clin Oncol. 2005;23:7043–7049.CrossRefPubMedGoogle Scholar
  79. 79.
    Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. CpG island methylator phenotype redefines the prognostic effect of t(12;21) in childhood acute lymphoblastic leukemia. Clin Cancer Res. 2006;12:4845–4850.CrossRefPubMedGoogle Scholar
  80. 80.
    Grovdal M, Khan R, Aggerholm A, et al. Negative effect of DNA hypermethylation on the outcome of intensive chemotherapy in older patients with high-risk myelodysplastic syndromes and acute myeloid leukemia following myelodysplastic syndrome. Clin Cancer Res. 2007;13:7107–7112.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sergej N. Konoplev
    • 1
  • Carlos E. Bueso-Ramos
    • 1
  1. 1.Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations