Skip to main content

Prognostic Markers

  • Chapter
  • First Online:
Molecular Pathology of Hematolymphoid Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 4))

  • 1295 Accesses

Abstract

The prognosis of hematolymphoid neoplasms varies greatly, not only between different entities but also among tumors that have the same diagnoses. Clinical variation among similar tumors is due largely to genetic and molecular diversity as well as hosts related issues, e.g., age of patient. Molecular and/or genetic variation among similar tumors may reflect differences in a particular tumor pathogenesis relative to others and/or acquisition of additional molecular abnormalities leading to a further loss of normal cell growth control mechanisms. Interpreting studies that correlate clinical outcome and other data with molecularly defined differences among similar neoplasms may be complicated by different therapeutic regimens among different studies, as well differences in which specific clinical parameters are evaluated. For example, overall survival, time to first treatment, and risk of relapse may all yield different results for a given prognostic marker. In spite of these complications, molecular prognostic markers have the potential to tie tumor biology to clinical behavior in individual patients and therefore, may be more informative than those based on stage or other clinical or laboratory data. In addition, molecular techniques may be used to follow levels of minimal residual disease and to better monitor responses to therapy, which is one of the most important general prognostic markers identified to date. The molecular and genomic prognostic markers discussed in this chapter for several specific diseases represent those that have recently been shown to have clinical utility or have the most clinical potential (Table 3.1). The discussion of other molecular/genomic markers that may also have prognostic significance may be found in later chapters devoted to specific hematolymphoid neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunphy CH. Gene expression profiling data in lymphoma and leukemia: review of the literature and extrapolation of pertinent clinical applications. Arch Pathol Lab Med. 2006;130:483–520.

    CAS  PubMed  Google Scholar 

  2. Staudt LM. Molecular diagnosis of the hematologic cancers. N Engl J Med. 2003;348:1777–1785.

    CAS  PubMed  Google Scholar 

  3. Flotho C, Coustan-Smith E, Pei D, et al. A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood. 2007;110:1271–1277.

    Article  CAS  PubMed  Google Scholar 

  4. Shaughnessy JD Jr, Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276–2284.

    Article  CAS  PubMed  Google Scholar 

  5. Bullinger L, Rucker FG, Kurz S, et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood. 2007;110:1291–1300.

    Article  CAS  PubMed  Google Scholar 

  6. Estey E, Dohner H. Acute myeloid leukaemia. Lancet. 2006;368:1894–1907.

    Article  PubMed  Google Scholar 

  7. Fonseca R, San Miguel J. Prognostic factors and staging in multiple myeloma. Hematol Oncol Clin North Am. 2007;21:1115–1140. ix.

    Article  PubMed  Google Scholar 

  8. Kay NE, O’Brien SM, Pettitt AR, Stilgenbauer S. The role of prognostic factors in assessing ‘high-risk’ subgroups of patients with chronic lymphocytic leukemia. Leukemia. 2007;21:1885–1891.

    Article  CAS  PubMed  Google Scholar 

  9. Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood. 2008;111:5477–5485.

    Article  CAS  PubMed  Google Scholar 

  10. Cave H, van der Werff ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med. 1998;339:591–598.

    Article  CAS  PubMed  Google Scholar 

  11. Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–2417.

    Article  CAS  PubMed  Google Scholar 

  12. Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108:28–37.

    Article  CAS  PubMed  Google Scholar 

  13. Moreau P, Attal M, Garban F, et al. Heterogeneity of t(4;14) in multiple myeloma. Long-term follow-up of 100 cases treated with tandem transplantation in IFM99 trials. Leukemia. 2007;21:2020–2024.

    Article  CAS  PubMed  Google Scholar 

  14. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381:751–758.

    Article  CAS  PubMed  Google Scholar 

  15. Klein U, Goossens T, Fischer M, et al. Somatic hypermutation in normal and transformed human B cells. Immunol Rev. 1998;162:261–280.

    Article  CAS  PubMed  Google Scholar 

  16. Papavasiliou FN, Schatz DG. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell. 2002;109(Suppl):S35–S44.

    Article  CAS  PubMed  Google Scholar 

  17. Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–1847.

    CAS  PubMed  Google Scholar 

  18. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–1854.

    CAS  PubMed  Google Scholar 

  19. Hamblin TJ, Davis ZA, Oscier DG. Determination of how many immunoglobulin variable region heavy chain mutations are allowable in unmutated chronic lymphocytic leukaemia – long-term follow up of patients with different percentages of mutations. Br J Haematol. 2008;140:320–323.

    Article  CAS  PubMed  Google Scholar 

  20. Grever MR, Lucas DM, Dewald GW, et al. Comprehensive assessment of genetic and molecular features predicting outcome in patients with chronic lymphocytic leukemia: results from the US Intergroup Phase III Trial E2997. J Clin Oncol. 2007;25:799–804.

    Article  CAS  PubMed  Google Scholar 

  21. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352:804–815.

    Article  CAS  PubMed  Google Scholar 

  22. Klein U, Tu Y, Stolovitzky GA, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194:1625–1638.

    Article  CAS  PubMed  Google Scholar 

  23. Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194:1639–1647.

    Article  CAS  PubMed  Google Scholar 

  24. Wiestner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 2003;101:4944–4951.

    Article  CAS  PubMed  Google Scholar 

  25. Chen L, Apgar J, Huynh L, et al. ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood. 2005;105:2036–2041.

    Article  CAS  PubMed  Google Scholar 

  26. Crespo M, Bosch F, Villamor N, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med. 2003;348:1764–1775.

    Article  CAS  PubMed  Google Scholar 

  27. Rassenti LZ, Huynh L, Toy TL, et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med. 2004;351:893–901.

    Article  CAS  PubMed  Google Scholar 

  28. Preobrazhensky SN, Bahler DW. Optimization of flow cytometric measurement of ZAP-70 in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2008;74:118–127.

    PubMed  Google Scholar 

  29. Algara P, Mateo MS, Sanchez-Beato M, et al. Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course. Blood. 2002;99:1299–1304.

    Article  CAS  PubMed  Google Scholar 

  30. Ghia EM, Jain S, Widhopf GF 2nd, et al. Use of IGHV3–21 in chronic lymphocytic leukemia is associated with high-risk disease and reflects antigen-driven, post-germinal center leukemogenic selection. Blood. 2008;111:5101–5108.

    Article  CAS  PubMed  Google Scholar 

  31. Tobin G, Thunberg U, Johnson A, et al. Chronic lymphocytic leukemias utilizing the VH3–21 gene display highly restricted Vlambda2–14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood. 2003;101:4952–4957.

    Article  CAS  PubMed  Google Scholar 

  32. Stevenson FK, Caligaris-Cappio F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood. 2004;103:4389–4395.

    Article  CAS  PubMed  Google Scholar 

  33. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–1916.

    Article  CAS  PubMed  Google Scholar 

  34. Krober A, Seiler T, Benner A, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100:1410–1416.

    CAS  PubMed  Google Scholar 

  35. Shanafelt TD, Witzig TE, Fink SR, et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol. 2006;24:4634–4641.

    Article  PubMed  Google Scholar 

  36. Austen B, Skowronska A, Baker C, et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol. 2007;25:5448–5457.

    Article  CAS  PubMed  Google Scholar 

  37. Tricot G, Spencer T, Sawyer J, et al. Predicting long-term (> or = 5 years) event-free survival in multiple myeloma patients following planned tandem autotransplants. Br J Haematol. 2002;116:211–217.

    Article  PubMed  Google Scholar 

  38. Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109:3489–3495.

    Article  CAS  PubMed  Google Scholar 

  39. Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101:4569–4575.

    Article  CAS  PubMed  Google Scholar 

  40. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106:296–303.

    Article  CAS  PubMed  Google Scholar 

  41. Tonon G. Molecular pathogenesis of multiple myeloma. Hematol Oncol Clin North Am. 2007;21:985–1006. vii.

    Article  PubMed  Google Scholar 

  42. Stewart AK, Bergsagel PL, Greipp PR, et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia. 2007;21:529–534.

    Article  CAS  PubMed  Google Scholar 

  43. Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma. Blood. 2006;108:2020–2028.

    Article  CAS  PubMed  Google Scholar 

  44. Mrozek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109:431–448.

    Article  CAS  PubMed  Google Scholar 

  45. Schlenk RF, Dohner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1909–1918.

    Article  CAS  PubMed  Google Scholar 

  46. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–1542.

    Article  CAS  PubMed  Google Scholar 

  47. Vempati S, Reindl C, Kaza SK, et al. Arginine 595 is duplicated in patients with acute leukemias carrying internal tandem duplications of FLT3 and modulates its transforming potential. Blood. 2007;110:686–694.

    Article  CAS  PubMed  Google Scholar 

  48. Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99:4326–4335.

    Article  CAS  PubMed  Google Scholar 

  49. Gale RE, Green C, Allen C, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111:2776–2784.

    Article  CAS  PubMed  Google Scholar 

  50. Fitzgibbon J, Smith LL, Raghavan M, et al. Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. Cancer Res. 2005;65:9152–9154.

    Article  CAS  PubMed  Google Scholar 

  51. Whitman SP, Archer KJ, Feng L, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61:7233–7239.

    CAS  PubMed  Google Scholar 

  52. Stirewalt DL, Kopecky KJ, Meshinchi S, et al. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood. 2006;107:3724–3726.

    Article  CAS  PubMed  Google Scholar 

  53. Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood. 2007;110:1262–1270.

    Article  CAS  PubMed  Google Scholar 

  54. Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S. Prognostic relevance of FLT3-TKD mutations in AML: the combination matters – an analysis of 3082 patients. Blood. 2008;111:2527–2537.

    Article  CAS  PubMed  Google Scholar 

  55. Whitman SP, Ruppert AS, Radmacher MD, et al. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood. 2008;111:1552–1559.

    Article  CAS  PubMed  Google Scholar 

  56. Chen W, Rassidakis GZ, Medeiros LJ. Nucleophosmin gene mutations in acute myeloid leukemia. Arch Pathol Lab Med. 2006;130:1687–1692.

    CAS  PubMed  Google Scholar 

  57. Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc + AML): biologic and clinical features. Blood. 2007;109:874–885.

    Article  CAS  PubMed  Google Scholar 

  58. Bertwistle D, Sugimoto M, Sherr CJ. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol. 2004;24:985–996.

    Article  CAS  PubMed  Google Scholar 

  59. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol. 2002;4:529–533.

    Article  CAS  PubMed  Google Scholar 

  60. Kondo T, Minamino N, Nagamura-Inoue T, Matsumoto M, Taniguchi T, Tanaka N. Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene. 1997;15:1275–1281.

    Article  CAS  PubMed  Google Scholar 

  61. Brown P, McIntyre E, Rau R, et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood. 2007;110:979–985.

    Article  CAS  PubMed  Google Scholar 

  62. Caudill JS, Sternberg AJ, Li CY, Tefferi A, Lasho TL, Steensma DP. C-terminal nucleophosmin mutations are uncommon in chronic myeloid disorders. Br J Haematol. 2006;133:638–641.

    Article  CAS  PubMed  Google Scholar 

  63. Schnittger S, Schoch C, Kern W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106:3733–3739.

    Article  CAS  PubMed  Google Scholar 

  64. Thiede C, Koch S, Creutzig E, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107:4011–4020.

    Article  CAS  PubMed  Google Scholar 

  65. Falini B, Martelli MP, Bolli N, et al. Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood. 2006;108:1999–2005.

    Article  CAS  PubMed  Google Scholar 

  66. Szankasi P, Jama M, Bahler DW. A new DNA-based test for detection of nucleophosmin exon 12 mutations by capillary electrophoresis. J Mol Diagn. 2008;10:236–241.

    Article  CAS  PubMed  Google Scholar 

  67. Wertheim G, Bagg A. Nucleophosmin (NPM1) mutations in acute myeloid leukemia: an ongoing (cytoplasmic) tale of dueling mutations and duality of molecular genetic testing methodologies. J Mol Diagn. 2008;10:198–202.

    Article  CAS  PubMed  Google Scholar 

  68. Chou WC, Tang JL, Wu SJ, et al. Clinical implications of minimal residual disease monitoring by quantitative polymerase chain reaction in acute myeloid leukemia patients bearing nucleophosmin (NPM1) mutations. Leukemia. 2007;21:998–1004.

    CAS  PubMed  Google Scholar 

  69. Ottone T, Ammatuna E, Lavorgna S, et al. An allele-specific rt-PCR assay to detect type A mutation of the nucleophosmin-1 gene in acute myeloid leukemia. J Mol Diagn. 2008;10:212–216.

    Article  CAS  PubMed  Google Scholar 

  70. Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007;7:750–762.

    Article  CAS  PubMed  Google Scholar 

  71. O’Shea D, O’Riain C, Taylor C, et al. The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival. Blood. 2008;112:3126–3129.

    Article  PubMed  Google Scholar 

  72. Young KH, Leroy K, Moller MB, et al. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood. 2008;112:3088–3098.

    Article  CAS  PubMed  Google Scholar 

  73. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–511.

    Article  CAS  PubMed  Google Scholar 

  74. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:1937–1947.

    Article  PubMed  Google Scholar 

  75. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S A. 2003;100:9991–9996.

    Article  CAS  PubMed  Google Scholar 

  76. Colomo L, Lopez-Guillermo A, Perales M, et al. Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma. Blood. 2003;101:78–84.

    Article  CAS  PubMed  Google Scholar 

  77. Hans CP, Finn WG, Singleton TP, Schnitzer B, Ross CW. Usefulness of anti-CD117 in the flow cytometri analysis of acute leukemia. Am J Clin Path. 2002;117:301–305.

    CAS  PubMed  Google Scholar 

  78. Monti S, Savage KJ, Kutok JL, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005;105:1851–1861.

    Article  CAS  PubMed  Google Scholar 

  79. Polo JM, Juszczynski P, Monti S, et al. Transcriptional signature with differential expression of BCL6 target genes accurately identifies BCL6-dependent diffuse large B cell lymphomas. Proc Natl Acad Sci U S A. 2007;104:3207–3212.

    Article  CAS  PubMed  Google Scholar 

  80. Lossos IS, Czerwinski DK, Alizadeh AA, et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med. 2004;350:1828–1837.

    Article  CAS  PubMed  Google Scholar 

  81. Malumbres R, Chen J, Tibshirani R, et al. Paraffin-based 6-gene model predicts outcome in diffuse large B-cell lymphoma patients treated with R-CHOP. Blood. 2008;111:5509–5514.

    Article  CAS  PubMed  Google Scholar 

  82. Fu K, Weisenburger DD, Choi WW, et al. Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell-like and non-germinal center B-cell-like subtypes of diffuse large B-cell lymphoma. J Clin Oncol. 2008;26:4587–4594.

    Article  CAS  PubMed  Google Scholar 

  83. Nyman H, Adde M, Karjalainen-Lindsberg ML, et al. Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. Blood. 2007;109:4930–4935.

    Article  CAS  PubMed  Google Scholar 

  84. Kanungo A, Medeiros LJ, Abruzzo LV, Lin P. Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor prognosis. Mod Pathol. 2006;19:25–33.

    Article  CAS  PubMed  Google Scholar 

  85. Le Gouill S, Talmant P, Touzeau C, et al. The clinical presentation and prognosis of diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC rearrangement. Haematologica. 2007;92:1335–1342.

    Article  PubMed  Google Scholar 

  86. Farinha P, Gascoyne RD. Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. J Clin Oncol. 2005;23:6370–6378.

    Article  CAS  PubMed  Google Scholar 

  87. Streubel B, Simonitsch-Klupp I, Mullauer L, et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia. 2004;18:1722–1726.

    Article  CAS  PubMed  Google Scholar 

  88. Ye H, Liu H, Attygalle A, et al. Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H. pylori in gastric MALT lymphoma. Blood. 2003;102:1012–1018.

    Article  CAS  PubMed  Google Scholar 

  89. Liu H, Ruskon-Fourmestraux A, Lavergne-Slove A, et al. Resistance of t(11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet. 2001;357:39–40.

    Article  CAS  PubMed  Google Scholar 

  90. Liu H, Ye H, Dogan A, et al. T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10. Blood. 2001;98:1182–1187.

    Article  CAS  PubMed  Google Scholar 

  91. Remstein ED, Kurtin PJ, James CD, et al. Mucosa-associated lymphoid tissue lymphomas with t(11;18)(q21;q21) and mucosa-associated lymphoid tissue lymphomas with aneuploidy develop along different pathogenetic pathways. Am J Pathol. 2002;161:63–71.

    PubMed  Google Scholar 

  92. Starostik P, Patzner J, Greiner A, et al. Gastric marginal zone B-cell lymphomas of MALT type develop along 2 distinct pathogenetic pathways. Blood. 2002;99:3–9.

    Article  CAS  PubMed  Google Scholar 

  93. Mateo M, Mollejo M, Villuendas R, et al. 7q31–32 allelic loss is a frequent finding in splenic marginal zone lymphoma. Am J Pathol. 1999;154:1583–1589.

    CAS  PubMed  Google Scholar 

  94. Ruiz-Ballesteros E, Mollejo M, Rodriguez A, et al. Splenic marginal zone lymphoma: proposal of new diagnostic and prognostic markers identified after tissue and cDNA microarray analysis. Blood. 2005;106:1831–1838.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bahler, D. (2010). Prognostic Markers. In: Dunphy, C. (eds) Molecular Pathology of Hematolymphoid Diseases. Molecular Pathology Library, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5698-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5698-9_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5697-2

  • Online ISBN: 978-1-4419-5698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics