Skip to main content

Precursor B-Cell Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
Molecular Pathology of Hematolymphoid Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 4))

  • 1329 Accesses

Abstract

Acute lymphoblastic leukemia (ALL) is a heterogeneous group of disorders caused by clonal expansion of immature lymphoid cells. The overall age-adjusted incidence is approximately 1.6 per 100,000 persons, with higher rates among children and adolescents than in adults. Diagnosis is based on bone marrow (BM) morphology, immunophenotyping by flow cytometry and/or immunohistochemistry, and identification of chromosomal/genetic abnormalities by cytogenetic or molecular genetic analysis. Precursor-B ALL, characterized by a malignant proliferation of immature B-lineage lymphoid cells, comprises the majority of all leukemias in both adults and children. Treatment of ALL involves multiple agents given in a complex regimen, typically lasting 2–3 years and involving numerous chemotherapeutic agents with different mechanisms of action. – Patients who achieve clinical remission (<5% blasts in the BM) after an initial month-long induction phase receive intensified consolidation to eliminate residual leukemic blasts, and maintenance therapy to suppress re-emergence of therapy-resistant clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The COG was formed in 2000 from a merger of the Children’s Cancer Group and the Pediatric Oncology Group.

References

  1. Greaves MF, Verbi W, Kemshead J, Kennett R. A monoclonal antibody identifying a cell surface antigen shared by common acute lymphoblastic leukemias and B lineage cells. Blood. 1980;56(6):1141–1144.

    CAS  PubMed  Google Scholar 

  2. Gaynon PS, Trigg ME, Heerema NA, et al. Children’s Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia. 2000;14(12):2223–2233.

    Article  CAS  PubMed  Google Scholar 

  3. Gokbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2006;133–141.

    Google Scholar 

  4. Maloney KW, Shuster JJ, Murphy S, Pullen J, Camitta BA. Long-term results of treatment studies for childhood acute lymphoblastic leukemia: Pediatric Oncology Group studies from 1986–1994. Leukemia. 2000;14(12):2276–2285.

    Article  CAS  PubMed  Google Scholar 

  5. Schrappe M, Reiter A, Zimmermann M, et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Munster. Leukemia. 2000;14(12):2205–2222.

    Article  CAS  PubMed  Google Scholar 

  6. Silverman LB, Declerck L, Gelber RD, et al. Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981–1995). Leukemia. 2000;14(12):2247–2256.

    Article  CAS  PubMed  Google Scholar 

  7. Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14(1):18–24.

    CAS  PubMed  Google Scholar 

  8. Schultz KR, Pullen DJ, Sather HN, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood. 2007;109(3):926–935.

    Article  CAS  PubMed  Google Scholar 

  9. Chessells JM, Hall E, Prentice HG, Durrant J, Bailey CC, Richards SM. The impact of age on outcome in lymphoblastic leukaemia; MRC UKALL X and XA compared: a report from the MRC Paediatric and Adult Working Parties. Leukemia. 1998;12(4):463–473.

    Article  CAS  PubMed  Google Scholar 

  10. Chessels JM, Swansbury GJ, Reeves B, Bailey CC, Richards SM. Cytogenetics and prognosis in childhood lymphoblastic leukaemia: results of MRC UKALL X. Medical Research Council Working Party in Childhood Leukaemia. Br J Haematol. 1997;99(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  11. Heerema NA, Sather HN, Sensel MG, et al. Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes). J Clin Oncol. 2000;18(9):1876–1887.

    CAS  PubMed  Google Scholar 

  12. Moorman AV, Richards SM, Martineau M, et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood. 2003;102(8):2756–2762.

    Article  CAS  PubMed  Google Scholar 

  13. Cytogenetic abnormalities in adult acute lymphoblastic leukemia: correlations with hematologic findings outcome. A Collaborative Study of the Group Francais de Cytogenetique Hematologique. Blood 1996;87(8):3135–3142.

    Google Scholar 

  14. Bloomfield CD, Goldman AI, Alimena G, et al. Chromosomal abnormalities identify high-risk and low-risk patients with acute lymphoblastic leukemia. Blood. 1986;67(2):415–420.

    CAS  PubMed  Google Scholar 

  15. Moorman AV, Harrison CJ, Buck GA, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–3197.

    Article  CAS  PubMed  Google Scholar 

  16. Secker-Walker LM, Prentice HG, Durrant J, Richards S, Hall E, Harrison G. Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. MRC Adult Leukaemia Working Party. Br J Haematol. 1997;96(3):601–610.

    Article  CAS  PubMed  Google Scholar 

  17. Wetzler M, Dodge RK, Mrozek K, et al. Prospective karyotype analysis in adult acute lymphoblastic leukemia: the cancer and leukemia Group B experience. Blood. 1999;93(11):3983–3993.

    CAS  PubMed  Google Scholar 

  18. Harrison CJ, Moorman AV, Broadfield ZJ, et al. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol. 2004;125(5):552–559.

    Article  PubMed  Google Scholar 

  19. Heerema NA, Nachman JB, Sather HN, et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children’s cancer group. Blood. 1999;94(12):4036–4045.

    CAS  PubMed  Google Scholar 

  20. Pui CH, Carroll AJ, Raimondi SC, et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with a near-haploid or hypodiploid less than 45 line. Blood. 1990;75(5):1170–1177.

    CAS  PubMed  Google Scholar 

  21. Pui CH, Evans WE. Acute lymphoblastic leukemia. N Engl J Med. 1998;339(9):605–615.

    Article  CAS  PubMed  Google Scholar 

  22. Raimondi SC, Roberson PK, Pui CH, Behm FG, Rivera GK. Hyperdiploid (47–50) acute lymphoblastic leukemia in children. Blood. 1992;79(12):3245–3252.

    CAS  PubMed  Google Scholar 

  23. Barry E, DeAngelo DJ, Neuberg D, et al. Favorable outcome for adolescents with acute lymphoblastic leukemia treated on Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium Protocols. J Clin Oncol. 2007;25(7):813–819.

    Article  CAS  PubMed  Google Scholar 

  24. Borkhardt A, Cazzaniga G, Viehmann S, et al. Incidence and clinical relevance of TEL/AML1 fusion genes in children with acute lymphoblastic leukemia enrolled in the German and Italian multicenter therapy trials. Associazione Italiana Ematologia Oncologia Pediatrica and the Berlin-Frankfurt-Munster Study Group. Blood. 1997;90(2):571–577.

    CAS  PubMed  Google Scholar 

  25. Loh ML, Goldwasser MA, Silverman LB, et al. Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95–01. Blood. 2006;107(11):4508–4513.

    Article  CAS  PubMed  Google Scholar 

  26. Uckun FM, Pallisgaard N, Hokland P, et al. Expression of TEL-AML1 fusion transcripts and response to induction therapy in standard risk acute lymphoblastic leukemia. Leuk Lymphoma. 2001;42(1–2):41–56.

    Article  CAS  PubMed  Google Scholar 

  27. Borowitz MJ, Rubnitz J, Nash M, Pullen DJ, Camitta B. Surface antigen phenotype can predict TEL–AML1 rearrangement in childhood B–precursor ALL: a Pediatric Oncology Group study. Leukemia. 1998;12(11):1764–1770.

    Article  CAS  PubMed  Google Scholar 

  28. Aguiar RC, Sohal J, van Rhee F, et al. TEL-AML1 fusion in acute lymphoblastic leukaemia of adults. M.R.C. Adult Leukaemia Working Party. Br J Haematol. 1996;95(4):673–677.

    Article  CAS  PubMed  Google Scholar 

  29. Elia L, Mancini M, Moleti L, et al. A multiplex reverse transcriptase-polymerase chain reaction strategy for the diagnostic molecular screening of chimeric genes: a clinical evaluation on 170 patients with acute lymphoblastic leukemia. Haematologica. 2003;88(3):275–279.

    CAS  PubMed  Google Scholar 

  30. Jabber Al-Obaidi MS, Martineau M, Bennett CF, et al. ETV6/AML1 fusion by FISH in adult acute lymphoblastic leukemia. Leukemia. 2002;16(4):669–674.

    Article  CAS  PubMed  Google Scholar 

  31. Kwong YL, Wong KF. Low frequency of TEL/AML1 in adult acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1997;98(2):137–138.

    Article  CAS  PubMed  Google Scholar 

  32. Lee DS, Kim YR, Cho HK, Lee CK, Lee JH, Cho HI. The presence of TEL/AML1 rearrangement and cryptic deletion of the TEL gene in adult acute lymphoblastic leukemia (ALL). Cancer Genet Cytogenet. 2005;162(2):176–178.

    Article  CAS  PubMed  Google Scholar 

  33. Raynaud S, Mauvieux L, Cayuela JM, et al. TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia. 1996;10(9):1529–1530.

    CAS  PubMed  Google Scholar 

  34. Shih LY, Chou TB, Liang DC, et al. Lack of TEL-AML1 fusion transcript resulting from a cryptic t(12;21) in adult B lineage acute lymphoblastic leukemia in Taiwan. Leukemia. 1996;10(9):1456–1458.

    CAS  PubMed  Google Scholar 

  35. Schlieben S, Borkhardt A, Reinisch I, et al. Incidence and clinical outcome of children with BCR/ABL-positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALL-BFM-90 and CoALL-05-92. Leukemia. 1996;10(6):957–963.

    CAS  PubMed  Google Scholar 

  36. Uckun FM, Nachman JB, Sather HN, et al. Clinical significance of Philadelphia chromosome positive pediatric acute lymphoblastic leukemia in the context of contemporary intensive therapies: a report from the Children’s Cancer Group. Cancer. 1998;83(9):2030–2039.

    Article  CAS  PubMed  Google Scholar 

  37. Pullarkat V, Slovak ML, Kopecky KJ, Forman SJ, Appelbaum FR. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood. 2008;111(5):2563–2572.

    Article  CAS  PubMed  Google Scholar 

  38. Thomas X, Boiron JM, Huguet F, et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol. 2004;22(20):4075–4086.

    Article  CAS  PubMed  Google Scholar 

  39. Czuczman MS, Dodge RK, Stewart CC, et al. Value of immunophenotype in intensively treated adult acute lymphoblastic leukemia: cancer and leukemia Group B study 8364. Blood. 1999;93(11):3931–3939.

    CAS  PubMed  Google Scholar 

  40. Rambaldi A, Attuati V, Bassan R, et al. Molecular diagnosis and clinical relevance of t(9;22), t(4;11) and t(1; 19) chromosome abnormalities in a consecutive group of 141 adult patients with acute lymphoblastic leukemia. Leuk Lymphoma. 1996;21(5-6):457–466.

    Article  CAS  PubMed  Google Scholar 

  41. Behm FG, Raimondi SC, Frestedt JL, et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood. 1996;87(7):2870–2877.

    CAS  PubMed  Google Scholar 

  42. Raimondi SC, Peiper SC, Kitchingman GR, et al. Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood. 1989;73(6):1627–1634.

    CAS  PubMed  Google Scholar 

  43. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–764.

    Article  CAS  PubMed  Google Scholar 

  44. Rubnitz JE, Behm FG, Pui CH, et al. Genetic studies of childhood acute lymphoblastic leukemia with emphasis on p16, MLL, and ETV6 gene abnormalities: results of St Jude Total Therapy Study XII. Leukemia. 1997;11(8):1201–1206.

    Article  CAS  PubMed  Google Scholar 

  45. Pui CH, Frankel LS, Carroll AJ, et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood. 1991;77(3):440–447.

    CAS  PubMed  Google Scholar 

  46. Crist WM, Carroll AJ, Shuster JJ, et al. Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study. Blood. 1990;76(1):117–122.

    CAS  PubMed  Google Scholar 

  47. Pui CH, Crist WM, Look AT. Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood. 1990;76(8):1449–1463.

    CAS  PubMed  Google Scholar 

  48. Uckun FM, Sensel MG, Sather HN, et al. Clinical significance of translocation t(1;19) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: a report from the Children’s Cancer Group. J Clin Oncol. 1998;16(2):527–535.

    CAS  PubMed  Google Scholar 

  49. Heerema NA, Sather HN, Sensel MG, et al. Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 1999;94(5):1537–1544.

    CAS  PubMed  Google Scholar 

  50. Murphy SB, Raimondi SC, Rivera GK, et al. Nonrandom abnormalities of chromosome 9p in childhood acute lymphoblastic leukemia: association with high-risk clinical features. Blood. 1989;74(1):409–415.

    CAS  PubMed  Google Scholar 

  51. Nahi H, Hagglund H, Ahlgren T, et al. An investigation into whether deletions in 9p reflect prognosis in adult precursor B-cell ALL: a multi-center study of 381 patients. Haematologica. 2008;93(11):1734–1738.

    Article  PubMed  Google Scholar 

  52. Harewood L, Robinson H, Harris R, et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia. 2003;17(3):547–553.

    Article  CAS  PubMed  Google Scholar 

  53. Harrison CJ, Moorman AV, Barber KE, et al. Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol. 2005;129(4):520–530.

    Article  PubMed  Google Scholar 

  54. HUGO Gene Nomenclature Committee. Internet 2008 October 14;Available at: URL: http://www.genenames.org/aboutHGNC.html.

  55. Downing JR, Mullighan CG. Tumor-specific genetic lesions and their influence on therapy in pediatric acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2006;118–22:508.

    Google Scholar 

  56. Faderl S, Jeha S, Kantarjian HM. The biology and therapy of adult acute lymphoblastic leukemia. Cancer. 2003;98(7):1337–1354.

    Article  PubMed  Google Scholar 

  57. Maia AT, van der Velden VH, Harrison CJ, et al. Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins. Leukemia. 2003;17(11):2202–2206.

    Article  CAS  PubMed  Google Scholar 

  58. Maia AT, Tussiwand R, Cazzaniga G, et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer. 2004;40(1):38–43.

    Article  PubMed  Google Scholar 

  59. Heerema NA, Raimondi SC, Anderson JR, et al. Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2007;46(7):684–693.

    Article  CAS  PubMed  Google Scholar 

  60. Trueworthy R, Shuster J, Look T, et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol. 1992;10(4):606–613.

    CAS  PubMed  Google Scholar 

  61. Synold TW, Relling MV, Boyett JM, et al. Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. J Clin Invest. 1994;94(5):1996–2001.

    Article  CAS  PubMed  Google Scholar 

  62. Whitehead VM, Vuchich MJ, Lauer SJ, et al. Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (greater than 50 chromosomes) B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood. 1992;80(5):1316–1323.

    CAS  PubMed  Google Scholar 

  63. Kaspers GJ, Smets LA, Pieters R, Van Zantwijk CH, Van Wering ER, Veerman AJ. Favorable prognosis of hyperdiploid common acute lymphoblastic leukemia may be explained by sensitivity to antimetabolites and other drugs: results of an in vitro study. Blood. 1995;85(3):751–756.

    CAS  PubMed  Google Scholar 

  64. Appel IM, Kazemier KM, Boos J, et al. Pharmacokinetic, pharmacodynamic and intracellular effects of PEG-asparaginase in newly diagnosed childhood acute lymphoblastic leukemia: results from a single agent window study. Leukemia. 2008;22(9):1665–1679.

    Article  CAS  PubMed  Google Scholar 

  65. Ito C, Kumagai M, Manabe A, et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood. 1999;93(1):315–320.

    CAS  PubMed  Google Scholar 

  66. Bloomfield CD, Secker-Walker LM, Goldman AI, et al. Six-year follow-up of the clinical significance of karyotype in acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1989;40(2):171–185.

    Article  CAS  PubMed  Google Scholar 

  67. Harris MB, Shuster JJ, Carroll A, et al. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood. 1992;79(12):3316–3324.

    CAS  PubMed  Google Scholar 

  68. Sutcliffe MJ, Shuster JJ, Sather HN, et al. High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children’s Oncology Group (COG) initiative. Leukemia. 2005;19(5):734–740.

    Article  CAS  PubMed  Google Scholar 

  69. Pui CH, Williams DL, Raimondi SC, et al. Hypodiploidy is associated with a poor prognosis in childhood acute lymphoblastic leukemia. Blood. 1987;70(1):247–253.

    CAS  PubMed  Google Scholar 

  70. Raimondi SC, Zhou Y, Mathew S, et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer. 2003;98(12):2715–2722.

    Article  PubMed  Google Scholar 

  71. Nachman JB, Heerema NA, Sather H, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110(4):1112–1115.

    Article  CAS  PubMed  Google Scholar 

  72. Wiemels JL, Cazzaniga G, Daniotti M, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet. 1999;354(9189):1499–1503.

    Article  CAS  PubMed  Google Scholar 

  73. Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M. Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood. 1999;94(3):1057–1062.

    CAS  PubMed  Google Scholar 

  74. Ensembl; Release 50, July 2008. Internet 2008 October 14.

    Google Scholar 

  75. McLean TW, Ringold S, Neuberg D, et al. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood. 1996;88(11):4252–4258.

    CAS  PubMed  Google Scholar 

  76. Stams WA, den Boer ML, Beverloo HB, et al. Expression levels of TEL, AML1, and the fusion products TEL-AML1 and AML1-TEL versus drug sensitivity and clinical outcome in t(12;21)-positive pediatric acute lymphoblastic leukemia. Clin Cancer Res. 2005;11(8):2974–2980.

    Article  CAS  PubMed  Google Scholar 

  77. Cave H, Cacheux V, Raynaud S, et al. ETV6 is the target of chromosome 12p deletions in t(12;21) childhood acute lymphocytic leukemia. Leukemia. 1997;11(9):1459–1464.

    Article  CAS  PubMed  Google Scholar 

  78. Raynaud S, Cave H, Baens M, et al. The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood. 1996;87(7):2891–2899.

    CAS  PubMed  Google Scholar 

  79. Romana SP, Le CM, Poirel H, Marynen P, Bernard O, Berger R. Deletion of the short arm of chromosome 12 is a secondary event in acute lymphoblastic leukemia with t(12;21). Leukemia. 1996;10(1):167–170.

    CAS  PubMed  Google Scholar 

  80. Ma SK, Wan TS, Cheuk AT, et al. Characterization of additional genetic events in childhood acute lymphoblastic leukemia with TEL/AML1 gene fusion: a molecular cytogenetics study. Leukemia. 2001;15(9):1442–1447.

    Article  CAS  PubMed  Google Scholar 

  81. Martinez-Ramirez A, Urioste M, Contra T, et al. Fluorescence in situ hybridization study of TEL/AML1 fusion and other abnormalities involving TEL and AML1 genes. Correlation with cytogenetic findings and prognostic value in children with acute lymphocytic leukemia. Haematologica. 2001;86(12):1245–1253.

    CAS  PubMed  Google Scholar 

  82. Ameye G, Jacquy C, Zenebergh A, et al. The value of interphase fluorescence in situ hybridization for the detection of translocation t(12;21) in childhood acute lymphoblastic leukemia. Ann Hematol. 2000;79(5):259–268.

    Article  CAS  PubMed  Google Scholar 

  83. Hart SM, Foroni L. Core binding factor genes and human leukemia. Haematologica. 2002;87(12):1307–1323.

    CAS  PubMed  Google Scholar 

  84. Raimondi SC, Shurtleff SA, Downing JR, et al. 12p abnormalities and the TEL gene (ETV6) in childhood acute lymphoblastic leukemia. Blood. 1997;90(11):4559–4566.

    CAS  PubMed  Google Scholar 

  85. Seeger K, Adams HP, Buchwald D, et al. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Munster Study Group. Blood. 1998;91(5):1716–1722.

    CAS  PubMed  Google Scholar 

  86. Krishna NR, Navara C, Sarquis M, Uckun FM. Chemosensitivity of TEL-AML1 fusion transcript positive acute lymphoblastic leukemia cells. Leuk Lymphoma. 2001;41(5–6):615–623.

    Google Scholar 

  87. Ramakers-van Woerden NL, Pieters R, Loonen AH, et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood. 2000;96(3):1094–1099.

    CAS  PubMed  Google Scholar 

  88. Loh ML, Silverman LB, Young ML, et al. Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood. 1998;92(12):4792–4797.

    CAS  PubMed  Google Scholar 

  89. Primo D, Tabernero MD, Rasillo A, et al. Patterns of BCR/ABL gene rearrangements by interphase fluorescence in situ hybridization (FISH) in BCR/ABL+ leukemias: incidence and underlying genetic abnormalities. Leukemia. 2003;17(6):1124–1129.

    Article  CAS  PubMed  Google Scholar 

  90. Gutierrez MI, Timson G, Siraj AK, et al. Single monochrome real-time RT-PCR assay for identification, quantification, and breakpoint cluster region determination of t(9;22) transcripts. J Mol Diagn. 2005;7(1):40–47.

    CAS  PubMed  Google Scholar 

  91. Ni H, Nitta M, Komatsu H, et al. Detection of bcr/abl fusion transcripts by semiquantitative multiplex RT-PCR combined with a colormetric assay in Ph positive leukemia. Cancer Lett. 1998;124(2):173–180.

    Article  CAS  PubMed  Google Scholar 

  92. Saffroy R, Lemoine A, Brezillon P, et al. Real-time quantitation of bcr-abl transcripts in haematological malignancies. Eur J Haematol. 2000;65(4):258–266.

    Article  CAS  PubMed  Google Scholar 

  93. Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood. 1996;88(7):2375–2384.

    CAS  PubMed  Google Scholar 

  94. Hermans A, Heisterkamp N, von Linden M, et al. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell. 1987;51(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  95. Mes-Masson AM, McLaughlin J, Daley GQ, Paskind M, Witte ON. Overlapping cDNA clones define the complete coding region for the P210c-abl gene product associated with chronic myelogenous leukemia cells containing the Philadelphia chromosome. Proc Natl Acad Sci USA. 1986;83(24):9768–9772.

    Article  CAS  PubMed  Google Scholar 

  96. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315(6020):550–554.

    Article  CAS  PubMed  Google Scholar 

  97. Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell. 1986;47(2):277–284.

    Article  CAS  PubMed  Google Scholar 

  98. DeKlein A, Hagemeijer A, Bartram CR, et al. bcr rearrangement and translocation of the c-abl oncogene in Philadelphia positive acute lymphoblastic leukemia. Blood. 1986;68(6):1369–1375.

    CAS  Google Scholar 

  99. Erikson J, Griffin CA. ar-Rushdi A et al. Heterogeneity of chromosome 22 breakpoint in Philadelphia-positive (Ph+) acute lymphocytic leukemia. Proc Natl Acad Sci USA. 1986;83(6):1807-1811.

    Article  CAS  PubMed  Google Scholar 

  100. Kurzrock R, Shtalrid M, Gutterman JU, et al. Molecular analysis of chromosome 22 breakpoints in adult Philadelphia-positive acute lymphoblastic leukaemia. Br J Haematol. 1987;67(1):55–59.

    Article  CAS  PubMed  Google Scholar 

  101. Chen SJ, Chen Z, Hillion J, et al. Ph1-positive, bcr-negative acute leukemias: clustering of breakpoints on chromosome 22 in the 3′ end of the BCR gene first intron. Blood. 1989;73(5):1312–1315.

    CAS  PubMed  Google Scholar 

  102. Heisterkamp N, Jenkins R, Thibodeau S, Testa JR, Weinberg K, Groffen J. The bcr gene in Philadelphia chromosome positive acute lymphoblastic leukemia. Blood. 1989;73(5):1307–1311.

    CAS  PubMed  Google Scholar 

  103. Rubin CM, Carrino JJ, Dickler MN, Leibowitz D, Smith SD, Westbrook CA. Heterogeneity of genomic fusion of BCR and ABL in Philadelphia chromosome-positive acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 1988;85(8):2795–2799.

    Article  CAS  PubMed  Google Scholar 

  104. Kurzrock R, Shtalrid M, Romero P, et al. A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukaemia. Nature. 1987;325(6105):631–635.

    Article  CAS  PubMed  Google Scholar 

  105. Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON. Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science. 1987;235(4784):85–88.

    Article  CAS  PubMed  Google Scholar 

  106. Chan LC, Karhi KK, Rayter SI, et al. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature. 1987;325(6105):635–637.

    Article  CAS  PubMed  Google Scholar 

  107. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. 1986;233(4760):212–214.

    Article  CAS  PubMed  Google Scholar 

  108. Gleissner B, Gokbuget N, Bartram CR, et al. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood. 2002;99(5):1536–1543.

    Article  CAS  PubMed  Google Scholar 

  109. Ko BS, Tang JL, Lee FY, et al. Additional chromosomal abnormalities and variability of BCR breakpoints in Philadelphia chromosome/BCR-ABL-positive acute lymphoblastic leukemia in Taiwan. Am J Hematol. 2002;71(4):291–299.

    Article  CAS  PubMed  Google Scholar 

  110. Radich JP, Kopecky KJ, Boldt DH, et al. Detection of BCR-ABL fusion genes in adult acute lymphoblastic leukemia by the polymerase chain reaction. Leukemia. 1994;8(10):1688–1695.

    CAS  PubMed  Google Scholar 

  111. Secker-Walker LM, Cooke HM, Browett PJ, et al. Variable Philadelphia breakpoints and potential lineage restriction of bcr rearrangement in acute lymphoblastic leukemia. Blood. 1988;72(2):784–791.

    CAS  PubMed  Google Scholar 

  112. Secker-Walker LM, Craig JM, Hawkins JM, Hoffbrand AV. Philadelphia positive acute lymphoblastic leukemia in adults: age distribution, BCR breakpoint and prognostic significance. Leukemia. 1991;5(3):196–199.

    CAS  PubMed  Google Scholar 

  113. Suryanarayan K, Hunger SP, Kohler S, et al. Consistent involvement of the bcr gene by 9;22 breakpoints in pediatric acute leukemias. Blood. 1991;77(2):324–330.

    CAS  PubMed  Google Scholar 

  114. Konopka JB, Watanabe SM, Witte ON. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell. 1984;37(3):1035–1042.

    Article  CAS  PubMed  Google Scholar 

  115. Arlinghaus RB. Bcr: a negative regulator of the Bcr-Abl oncoprotein in leukemia. Oncogene. 2002;21(56):8560–8567.

    Article  CAS  PubMed  Google Scholar 

  116. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247(4944):824–830.

    Article  CAS  PubMed  Google Scholar 

  117. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247(4946):1079–1082.

    Article  CAS  PubMed  Google Scholar 

  118. Secker-Walker LM. The prognostic implications of chromosomal findings in acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1984;11(2):233–248.

    Article  CAS  PubMed  Google Scholar 

  119. Fletcher JA, Kimball VM, Lynch E, et al. Prognostic implications of cytogenetic studies in an intensively treated group of children with acute lymphoblastic leukemia. Blood. 1989;74(6):2130–2135.

    CAS  PubMed  Google Scholar 

  120. Ribeiro RC, Abromowitch M, Raimondi SC, Murphy SB, Behm F, Williams DL. Clinical and biologic hallmarks of the Philadelphia chromosome in childhood acute lymphoblastic leukemia. Blood. 1987;70(4):948–953.

    CAS  PubMed  Google Scholar 

  121. Crist W, Carroll A, Shuster J, et al. Philadelphia chromosome positive childhood acute lymphoblastic leukemia: clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. Blood. 1990;76(3):489–494.

    CAS  PubMed  Google Scholar 

  122. Arico M, Valsecchi MG, Camitta B, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342(14):998–1006.

    Article  CAS  PubMed  Google Scholar 

  123. Secker-Walker LM, Craig JM. Prognostic implications of breakpoint and lineage heterogeneity in Philadelphia-positive acute lymphoblastic leukemia: a review. Leukemia. 1993;7(2):147–151.

    CAS  PubMed  Google Scholar 

  124. Nachman JB, Sather HN, Sensel MG, et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med. 1998;338(23):1663–1671.

    Article  CAS  PubMed  Google Scholar 

  125. Roy A, Bradburn M, Moorman AV, et al. Early response to induction is predictive of survival in childhood Philadelphia chromosome positive acute lymphoblastic leukaemia: results of the Medical Research Council ALL 97 trial. Br J Haematol. 2005;129(1):35–44.

    Article  PubMed  Google Scholar 

  126. Marks DI, Bird JM, Cornish JM, et al. Unrelated donor bone marrow transplantation for children and adolescents with Philadelphia-positive acute lymphoblastic leukemia. J Clin Oncol. 1998;16(3):931–936.

    CAS  PubMed  Google Scholar 

  127. Mori T, Manabe A, Tsuchida M, et al. Allogeneic bone marrow transplantation in first remission rescues children with Philadelphia chromosome-positive acute lymphoblastic leukemia: Tokyo Children’s Cancer Study Group (TCCSG) studies L89-12 and L92-13. Med Pediatr Oncol. 2001;37(5):426–431.

    Article  CAS  PubMed  Google Scholar 

  128. Satwani P, Sather H, Ozkaynak F, et al. Allogeneic bone marrow transplantation in first remission for children with ultra-high-risk features of acute lymphoblastic leukemia: a children’s oncology group study report. Biol Blood Marrow Transplant. 2007;13(2):218–227.

    Article  CAS  PubMed  Google Scholar 

  129. Sharathkumar A, Saunders EF, Dror Y, et al. Allogeneic bone marrow transplantation vs chemotherapy for children with Philadelphia chromosome-positive acute lymphoblastic leukemia. Bone Marrow Transplant. 2004;33(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  130. Wheeler KA, Richards SM, Bailey CC, et al. Bone marrow transplantation versus chemotherapy in the treatment of very high-risk childhood acute lymphoblastic leukemia in first remission: results from Medical Research Council UKALL X and XI. Blood. 2000;96(7):2412–2418.

    CAS  PubMed  Google Scholar 

  131. Cornelissen JJ, Carston M, Kollman C, et al. Unrelated marrow transplantation for adult patients with poor-risk acute lymphoblastic leukemia: strong graft-versus-leukemia effect and risk factors determining outcome. Blood. 2001;97(6):1572–1577.

    Article  CAS  PubMed  Google Scholar 

  132. Durrant IJ, Richards SM, Prentice HG, Goldstone AH. The Medical Research Council trials in adult acute lymphocytic leukemia. Hematol Oncol Clin North Am. 2000;14(6):1327–1352.

    Article  CAS  PubMed  Google Scholar 

  133. Fiere D, Lepage E, Sebban C, et al. Adult acute lymphoblastic leukemia: a multicentric randomized trial testing bone marrow transplantation as postremission therapy. The French Group on Therapy for Adult Acute Lymphoblastic Leukemia. J Clin Oncol. 1993;11(10):1990–2001.

    CAS  PubMed  Google Scholar 

  134. Goldstone AH, Richards SM, Lazarus HM, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood. 2008;111(4):1827–1833.

    Article  CAS  PubMed  Google Scholar 

  135. Ottmann OG, Wassmann B. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2005;118–122.

    Google Scholar 

  136. Chao NJ, Blume KG, Forman SJ, Snyder DS. Long-term follow-up of allogeneic bone marrow recipients for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1995;85(11):3353–3354.

    CAS  PubMed  Google Scholar 

  137. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344(14):1038–1042.

    Article  CAS  PubMed  Google Scholar 

  138. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–1037.

    Article  CAS  PubMed  Google Scholar 

  139. Ottmann OG, Druker BJ, Sawyers CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood. 2002;100(6):1965–1971.

    Article  CAS  PubMed  Google Scholar 

  140. Ottmann OG, Wassmann B, Pfeifer H, et al. Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL). Cancer. 2007;109(10):2068–2076.

    Article  CAS  PubMed  Google Scholar 

  141. Bhatia R, Holtz M, Niu N, et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood. 2003;101(12):4701–4707.

    Article  CAS  PubMed  Google Scholar 

  142. Hughes TP, Kaeda J, Branford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–1432.

    Article  CAS  PubMed  Google Scholar 

  143. Branford S, Rudzki Z, Walsh S, et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002;99(9):3472–3475.

    Article  CAS  PubMed  Google Scholar 

  144. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–880.

    Article  CAS  PubMed  Google Scholar 

  145. Jones D, Thomas D, Yin CC, et al. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer. 2008;113(5):985–994.

    Article  CAS  PubMed  Google Scholar 

  146. Champagne MA, Capdeville R, Krailo M, et al. Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: results from a Children’s Oncology Group phase 1 study. Blood. 2004;104(9):2655–2660.

    Article  CAS  PubMed  Google Scholar 

  147. Fuster JL, Bermudez M, Galera A, Llinares ME, Calle D, Ortuno FJ. Imatinib mesylate in combination with chemotherapy in four children with de novo and advanced stage Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2007;92(12):1723–1724.

    Article  CAS  PubMed  Google Scholar 

  148. Schultz KR, Bowman WP, Slayton W, et al. Improved Early Event Free Survival (EFS) in Children with Philadelphia Chromosome-Positive (Ph+) Acute Lymphoblastic Leukemia (ALL) with Intensive Imatinib in Combination with High Dose Chemotherapy: Children’s Oncology Group (COG) Study AALL0031. ASH Annual Meeting Abstracts. 2007;110(11):4.

    Google Scholar 

  149. Keam SJ. Dasatinib: in chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. BioDrugs. 2008;22(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  150. Steinberg M. Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther. 2007;29(11):2289–2308.

    Article  CAS  PubMed  Google Scholar 

  151. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–2541.

    Article  CAS  PubMed  Google Scholar 

  152. Ottmann O, Dombret H, Martinelli G, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110(7):2309–2315.

    Article  CAS  PubMed  Google Scholar 

  153. Chen CS, Sorensen PH, Domer PH, et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood. 1993;81(9):2386–2393.

    CAS  PubMed  Google Scholar 

  154. Pui CH, Behm FG, Downing JR, et al. 11q23/MLL rearrangement confers a poor prognosis in infants with acute lymphoblastic leukemia. J Clin Oncol. 1994;12(5):909–915.

    CAS  PubMed  Google Scholar 

  155. Rubnitz JE, Link MP, Shuster JJ, et al. Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood. 1994;84(2):570–573.

    CAS  PubMed  Google Scholar 

  156. Ford AM, Ridge SA, Cabrera ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature. 1993;363(6427):358–360.

    Article  CAS  PubMed  Google Scholar 

  157. Gale KB, Ford AM, Repp R, et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA. 1997;94(25):13950–13954.

    Article  CAS  PubMed  Google Scholar 

  158. Gill Super HJ, Rothberg PG, Kobayashi H, Freeman AI, Diaz MO, Rowley JD. Clonal, nonconstitutional rearrangements of the MLL gene in infant twins with acute lymphoblastic leukemia: in utero chromosome rearrangement of 11q23. Blood. 1994;83(3):641–644.

    CAS  PubMed  Google Scholar 

  159. Cimino G, Rapanotti MC, Sprovieri T, Elia L. ALL1 gene alterations in acute leukemia: biological and clinical aspects. Haematologica. 1998;83(4):350–357.

    CAS  PubMed  Google Scholar 

  160. Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell. 2002;10(5):1107–1117.

    Article  CAS  PubMed  Google Scholar 

  161. Jenuwein T, Laible G, Dorn R, Reuter G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci. 1998;54(1):80–93.

    Article  CAS  PubMed  Google Scholar 

  162. Prasad R, Yano T, Sorio C, et al. Domains with transcriptional regulatory activity within the ALL1 and AF4 proteins involved in acute leukemia. Proc Natl Acad Sci USA. 1995;92(26):12160–12164.

    Article  CAS  PubMed  Google Scholar 

  163. Caslini C, Alarcon AS, Hess JL, Tanaka R, Murti KG, Biondi A. The amino terminus targets the mixed lineage leukemia (MLL) protein to the nucleolus, nuclear matrix and mitotic chromosomal scaffolds. Leukemia. 2000;14(11):1898–1908.

    Article  CAS  PubMed  Google Scholar 

  164. Caslini C, Shilatifard A, Yang L, Hess JL. The amino terminus of the mixed lineage leukemia protein (MLL) promotes cell cycle arrest and monocytic differentiation. Proc Natl Acad Sci USA. 2000;97(6):2797–2802.

    Article  CAS  PubMed  Google Scholar 

  165. Lawrence HJ, Sauvageau G, Humphries RK, Largman C. The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells. 1996;14(3):281–291.

    Article  CAS  PubMed  Google Scholar 

  166. Ernst P, Mabon M, Davidson AJ, Zon LI, Korsmeyer SJ. An Mll-dependent Hox program drives hematopoietic progenitor expansion. Curr Biol. 2004;14(22):2063–2069.

    Article  CAS  PubMed  Google Scholar 

  167. Milne TA, Martin ME, Brock HW, Slany RK, Hess JL. Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res. 2005;65(24):11367–11374.

    Article  CAS  PubMed  Google Scholar 

  168. Milne TA, Dou Y, Martin ME, Brock HW, Roeder RG, Hess JL. MLL associates specifically with a subset of transcriptionally active target genes. Proc Natl Acad Sci USA. 2005;102(41):14765–14770.

    Article  CAS  PubMed  Google Scholar 

  169. Domer PH, Fakharzadeh SS, Chen CS, et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc Natl Acad Sci USA. 1993;90(16):7884–7888.

    Article  CAS  PubMed  Google Scholar 

  170. Gu Y, Nakamura T, Alder H, et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell. 1992;71(4):701–708.

    Article  CAS  PubMed  Google Scholar 

  171. Nakamura T, Alder H, Gu Y, et al. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc Natl Acad Sci USA. 1993;90(10):4631–4635.

    Article  CAS  PubMed  Google Scholar 

  172. Tkachuk DC, Kohler S, Cleary ML. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell. 1992;71(4):691–700.

    Article  CAS  PubMed  Google Scholar 

  173. Biondi A, Rambaldi A, Rossi V, et al. Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation. Blood. 1993;82(10):2943–2947.

    CAS  PubMed  Google Scholar 

  174. Broeker PL, Super HG, Thirman MJ, et al. Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood. 1996;87(5):1912–1922.

    CAS  PubMed  Google Scholar 

  175. Corral J, Forster A, Thompson S, et al. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc Natl Acad Sci USA. 1993;90(18):8538–8542.

    Article  CAS  PubMed  Google Scholar 

  176. Felix CA, Hosler MR, Slater DJ, et al. MLL genomic breakpoint distribution within the breakpoint cluster region in de novo leukemia in children. J Pediatr Hematol Oncol. 1998;20(4):299–308.

    Article  CAS  PubMed  Google Scholar 

  177. Hilden JM, Chen CS, Moore R, Frestedt J, Kersey JH. Heterogeneity in MLL/AF-4 fusion messenger RNA detected by the polymerase chain reaction in t(4;11) acute leukemia. Cancer Res. 1993;53(17):3853–3856.

    CAS  PubMed  Google Scholar 

  178. Langer T, Metzler M, Reinhardt D, et al. Analysis of t(9;11) chromosomal breakpoint sequences in childhood acute leukemia: almost identical MLL breakpoints in therapy-related AML after treatment without etoposides. Genes Chromosomes Cancer. 2003;36(4):393–401.

    Article  CAS  PubMed  Google Scholar 

  179. Thirman MJ, Gill HJ, Burnett RC, et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med. 1993;329(13):909–914.

    Article  CAS  PubMed  Google Scholar 

  180. Rowley JD. Rearrangements involving chromosome band 11Q23 in acute leukaemia. Semin Cancer Biol. 1993;4(6):377–385.

    CAS  PubMed  Google Scholar 

  181. Daser A, Rabbitts TH. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol. 2005;15(3):175–188.

    Article  CAS  PubMed  Google Scholar 

  182. Baskaran K, Erfurth F, Taborn G, et al. Cloning and developmental expression of the murine homolog of the acute leukemia proto-oncogene AF4. Oncogene. 1997;15(16):1967–1978.

    Article  CAS  PubMed  Google Scholar 

  183. Rubnitz JE, Morrissey J, Savage PA, Cleary ML. ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood. 1994;84(6):1747–1752.

    CAS  PubMed  Google Scholar 

  184. Schreiner SA, Garcia-Cuellar MP, Fey GH, Slany RK. The leukemogenic fusion of MLL with ENL creates a novel transcriptional transactivator. Leukemia. 1999;13(10):1525–1533.

    Article  CAS  PubMed  Google Scholar 

  185. Frestedt JL, Hilden JM, Kersey JH. AF4/FEL, a gene involved in infant leukemia: sequence variations, gene structure, and possible homology with a genomic sequence on 5q31. DNA Cell Biol. 1996;15(8):669–678.

    Article  CAS  PubMed  Google Scholar 

  186. Lavau C, Szilvassy SJ, Slany R, Cleary ML. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 1997;16(14):4226–4237.

    Article  CAS  PubMed  Google Scholar 

  187. Corral J, Lavenir I, Impey H, et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell. 1996;85(6):853–861.

    Article  CAS  PubMed  Google Scholar 

  188. Dobson CL, Warren AJ, Pannell R, et al. The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J. 1999;18(13):3564–3574.

    Article  CAS  PubMed  Google Scholar 

  189. Garcia-Cuellar MP, Zilles O, Schreiner SA, Birke M, Winkler TH, Slany RK. The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3. Oncogene. 2001;20(4):411–419.

    Article  CAS  PubMed  Google Scholar 

  190. Zeisig BB, Milne T, Garcia-Cuellar MP, et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol. 2004;24(2):617–628.

    Article  CAS  PubMed  Google Scholar 

  191. Collins EC, Appert A. riza-McNaughton L, Pannell R, Yamada Y, Rabbitts TH. Mouse Af9 is a controller of embryo patterning, like Mll, whose human homologue fuses with Af9 after chromosomal translocation in leukemia. Mol Cell Biol. 2002;22(20):7313–7324.

    Article  CAS  PubMed  Google Scholar 

  192. Prasad R, Leshkowitz D, Gu Y, et al. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. Proc Natl Acad Sci USA. 1994;91(17):8107–8111.

    Article  CAS  PubMed  Google Scholar 

  193. Arthur DC, Bloomfield CD, Lindquist LL, Nesbit ME Jr. Translocation 4; 11 in acute lymphoblastic leukemia: clinical characteristics and prognostic significance. Blood. 1982;59(1):96–99.

    CAS  PubMed  Google Scholar 

  194. Chessells JM, Harrison CJ, Kempski H, et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia. 2002;16(5):776–784.

    Article  CAS  PubMed  Google Scholar 

  195. Hann I, Vora A, Harrison G, et al. Determinants of outcome after intensified therapy of childhood lymphoblastic leukaemia: results from Medical Research Council United Kingdom acute lymphoblastic leukaemia XI protocol. Br J Haematol. 2001;113(1):103–114.

    Article  CAS  PubMed  Google Scholar 

  196. Heerema NA, Arthur DC, Sather H, et al. Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakpoint on outcome: a report of the Childrens Cancer Group. Blood. 1994;83(8):2274–2284.

    CAS  PubMed  Google Scholar 

  197. Johansson B, Moorman AV, Haas OA, et al. Hematologic malignancies with t(4;11)(q21;q23) – a cytogenetic, morphologic, immunophenotypic and clinical study of 183 cases. European 11q23 Workshop participants. Leukemia. 1998;12(5):779–787.

    Article  CAS  PubMed  Google Scholar 

  198. Pui CH, Carroll LA, Raimondi SC, Shuster JJ, Crist WM, Pullen DJ. Childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): an update. Blood. 1994;83(8):2384–2385.

    CAS  PubMed  Google Scholar 

  199. Pui CH, Gaynon PS, Boyett JM, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet. 2002;359(9321):1909–1915.

    Article  PubMed  Google Scholar 

  200. Pui CH, Chessells JM, Camitta B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia. 2003;17(4):700–706.

    Article  CAS  PubMed  Google Scholar 

  201. Reaman GH, Sposto R, Sensel MG, et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children’s Cancer Group. J Clin Oncol. 1999;17(2):445–455.

    CAS  PubMed  Google Scholar 

  202. Rubnitz JE, Camitta BM, Mahmoud H, et al. Childhood acute lymphoblastic leukemia with the MLL-ENL fusion and t(11;19)(q23;p13.3) translocation. J Clin Oncol. 1999;17(1):191–196.

    CAS  PubMed  Google Scholar 

  203. Moorman AV, Raimondi SC, Pui CH, et al. No prognostic effect of additional chromosomal abnormalities in children with acute lymphoblastic leukemia and 11q23 abnormalities. Leukemia. 2005;19(4):557–563.

    CAS  PubMed  Google Scholar 

  204. Chessells JM, Harrison CJ, Watson SL, Vora AJ, Richards SM. Treatment of infants with lymphoblastic leukaemia: results of the UK Infant Protocols 1987–1999. Br J Haematol. 2002;117(2):306–314.

    Article  CAS  PubMed  Google Scholar 

  205. Balduzzi A, Valsecchi MG, Uderzo C, et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet. 2005;366(9486):635–642.

    Article  PubMed  Google Scholar 

  206. Jacobsohn DA, Hewlett B, Morgan E, Tse W, Duerst RE, Kletzel M. Favorable outcome for infant acute lymphoblastic leukemia after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11(12):999–1005.

    Article  PubMed  Google Scholar 

  207. Saarinen-Pihkala UM, Gustafsson G, Carlsen N, et al. Outcome of children with high-risk acute lymphoblastic leukemia (HR-ALL): Nordic results on an intensive regimen with restricted central nervous system irradiation. Pediatr Blood Cancer. 2004;42(1):8–23.

    Article  PubMed  Google Scholar 

  208. Shikano T, Kaneko Y, Takazawa M, Ueno N, Ohkawa M, Fujimoto T. Balanced and unbalanced 1;19 translocation-associated acute lymphoblastic leukemias. Cancer. 1986;58(10):2239–2243.

    Article  CAS  PubMed  Google Scholar 

  209. Mellentin JD, Murre C, Donlon TA, et al. The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Science. 1989;246(4928):379–382.

    Article  CAS  PubMed  Google Scholar 

  210. Mellentin JD, Nourse J, Hunger SP, Smith SD, Cleary ML. Molecular analysis of the t(1;19) breakpoint cluster region in pre-B cell acute lymphoblastic leukemias. Genes Chromosomes Cancer. 1990;2(3):239–247.

    Article  CAS  PubMed  Google Scholar 

  211. Kamps MP, Murre C, Sun XH, Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell. 1990;60(4):547–555.

    Article  CAS  PubMed  Google Scholar 

  212. Nourse J, Mellentin JD, Galili N, et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell. 1990;60(4):535–545.

    Article  CAS  PubMed  Google Scholar 

  213. Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood. 1991;77(4):687–693.

    CAS  PubMed  Google Scholar 

  214. Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989;56(5):777–783.

    Article  CAS  PubMed  Google Scholar 

  215. Rauskolb C, Peifer M, Wieschaus E. extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell. 1993;74(6):1101–1112.

    Article  CAS  PubMed  Google Scholar 

  216. Flegel WA, Singson AW, Margolis JS, Bang AG, Posakony JW, Murre C. Dpbx, a new homeobox gene closely related to the human proto-oncogene pbx1 molecular structure and developmental expression. Mech Dev. 1993;41(2–3):155–161.

    Article  CAS  PubMed  Google Scholar 

  217. Moens CB, Selleri L. Hox cofactors in vertebrate development. Dev Biol. 2006;291(2):193–206.

    Article  CAS  PubMed  Google Scholar 

  218. Mann RS, Chan SK. Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins. Trends Genet. 1996;12(7):258–262.

    Article  CAS  PubMed  Google Scholar 

  219. Lu Q, Wright DD, Kamps MP. Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation. Mol Cell Biol. 1994;14(6):3938–3948.

    CAS  PubMed  Google Scholar 

  220. Kamps MP, Look AT, Baltimore D. The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev. 1991;5(3):358–368.

    Article  CAS  PubMed  Google Scholar 

  221. Dedera DA, Waller EK, LeBrun DP, et al. Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice. Cell. 1993;74(5):833–843.

    Article  CAS  PubMed  Google Scholar 

  222. Kamps MP, Baltimore D. E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol. 1993;13(1):351–357.

    CAS  PubMed  Google Scholar 

  223. Hunger SP. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood. 1996;87(4):1211–1224.

    CAS  PubMed  Google Scholar 

  224. Knoepfler PS, Kamps MP. The pentapeptide motif of Hox proteins is required for cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by Pbx1. Mol Cell Biol. 1995;15(10):5811–5819.

    CAS  PubMed  Google Scholar 

  225. Knoepfler PS, Kamps MP. The highest affinity DNA element bound by Pbx complexes in t(1;19) leukemic cells fails to mediate cooperative DNA-binding or cooperative transactivation by E2a-Pbx1 and class I Hox proteins – evidence for selective targetting of E2a-Pbx1 to a subset of Pbx-recognition elements. Oncogene. 1997;14(21):2521–2531.

    Article  CAS  PubMed  Google Scholar 

  226. Knoepfler PS, Sykes DB, Pasillas M, Kamps MP. HoxB8 requires its Pbx-interaction motif to block differentiation of primary myeloid progenitors and of most cell line models of myeloid differentiation. Oncogene. 2001;20(39):5440–5448.

    Article  CAS  PubMed  Google Scholar 

  227. Lu Q, Kamps MP. Structural determinants within Pbx1 that mediate cooperative DNA binding with pentapeptide-containing Hox proteins: proposal for a model of a Pbx1-Hox-DNA complex. Mol Cell Biol. 1996;16(4):1632–1640.

    CAS  PubMed  Google Scholar 

  228. Phelan ML, Rambaldi I, Featherstone MS. Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif. Mol Cell Biol. 1995;15(8):3989–3997.

    CAS  PubMed  Google Scholar 

  229. Lu Q, Kamps MP. Heterodimerization of Hox proteins with Pbx1 and oncoprotein E2a-Pbx1 generates unique DNA-binding specifities at nucleotides predicted to contact the N-terminal arm of the Hox homeodomain–demonstration of Hox-dependent targeting of E2a-Pbx1 in vivo. Oncogene. 1997;14(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  230. Chang CP, de Vivo I, Cleary ML. The Hox cooperativity motif of the chimeric oncoprotein E2a-Pbx1 is necessary and sufficient for oncogenesis. Mol Cell Biol. 1997;17(1):81–88.

    CAS  PubMed  Google Scholar 

  231. Knoepfler PS, Calvo KR, Chen H, Antonarakis SE, Kamps MP. Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1. Proc Natl Acad Sci USA. 1997;94(26):14553–14558.

    Article  CAS  PubMed  Google Scholar 

  232. Chang CP, Jacobs Y, Nakamura T, Jenkins NA, Copeland NG, Cleary ML. Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric Pbx proteins. Mol Cell Biol. 1997;17(10):5679–5687.

    CAS  PubMed  Google Scholar 

  233. Thorsteinsdottir U, Krosl J, Kroon E, Haman A, Hoang T, Sauvageau G. The oncoprotein E2A-Pbx1a collaborates with Hoxa9 to acutely transform primary bone marrow cells. Mol Cell Biol. 1999;19(9):6355–6366.

    CAS  PubMed  Google Scholar 

  234. Lu Q, Kamps MP. Selective repression of transcriptional activators by Pbx1 does not require the homeodomain. Proc Natl Acad Sci USA. 1996;93(1):470–474.

    Article  CAS  PubMed  Google Scholar 

  235. McWhirter JR, Goulding M, Weiner JA, Chun J, Murre C. A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1. Development. 1997;124(17):3221–3232.

    CAS  PubMed  Google Scholar 

  236. de Lau WB, Hurenkamp J, Berendes P, Touw IP, Clevers HC, van Dijk MA. The gene encoding the granulocyte colony-stimulating factor receptor is a target for deregulation in pre-B ALL by the t(1;19)-specific oncoprotein E2A-Pbx1. Oncogene. 1998;17(4):503–510.

    Article  PubMed  Google Scholar 

  237. Fu X, McGrath S, Pasillas M, Nakazawa S, Kamps MP. EB-1, a tyrosine kinase signal transduction gene, is transcriptionally activated in the t(1;19) subset of pre-B ALL, which express oncoprotein E2a-Pbx1. Oncogene. 1999;18(35):4920–4929.

    Article  CAS  PubMed  Google Scholar 

  238. McWhirter JR, Neuteboom ST, Wancewicz EV, Monia BP, Downing JR, Murre C. Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc Natl Acad Sci USA. 1999;96(20):11464–11469.

    Article  CAS  PubMed  Google Scholar 

  239. Fu X, Roberts WG, Nobile V, Shapiro R, Kamps MP. mAngiogenin-3, a target gene of oncoprotein E2a-Pbx1, encodes a new angiogenic member of the angiogenin family. Growth Factors. 1999;17(2):125–137.

    Article  CAS  PubMed  Google Scholar 

  240. Kagawa N, Ogo A, Takahashi Y, Iwamatsu A, Waterman MR. A cAMP-regulatory sequence (CRS1) of CYP17 is a cellular target for the homeodomain protein Pbx1. J Biol Chem. 1994;269(29):18716–18719.

    CAS  PubMed  Google Scholar 

  241. Ogo A, Waterman MR, Kamps MP, Kagawa N. Protein kinase A-dependent transactivation by the E2A-Pbx1 fusion protein. J Biol Chem. 1995;270(43):25340–25343.

    Article  CAS  PubMed  Google Scholar 

  242. Carroll AJ, Crist WM, Parmley RT, Roper M, Cooper MD, Finley WH. Pre-B cell leukemia associated with chromosome translocation 1;19. Blood. 1984;63(3):721–724.

    CAS  PubMed  Google Scholar 

  243. Pui CH, Raimondi SC, Hancock ML, et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19) (q23; p13) or its derivative. J Clin Oncol. 1994;12(12):2601–2606.

    CAS  PubMed  Google Scholar 

  244. Secker-Walker LM, Berger R, Fenaux P, et al. Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. Leukemia. 1992;6(5):363–369.

    CAS  PubMed  Google Scholar 

  245. Gaynon PS, Crotty ML, Sather HN, et al. Expression of BCR-ABL, E2A-PBX1, and MLL-AF4 fusion transcripts in newly diagnosed children with acute lymphoblastic leukemia: a Children’s Cancer Group initiative. Leuk Lymphoma. 1997;26(1–2):57–65.

    CAS  PubMed  Google Scholar 

  246. Raimondi SC, Behm FG, Roberson PK, et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol. 1990;8(8):1380–1388.

    CAS  PubMed  Google Scholar 

  247. Mancini M, Scappaticci D, Cimino G, et al. A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood. 2005;105(9):3434–3441.

    Article  CAS  PubMed  Google Scholar 

  248. Vey N, Thomas X, Picard C, et al. Allogeneic stem cell transplantation improves the outcome of adults with t(1;19)/E2A-PBX1 and t(4;11)/MLL-AF4 positive B-cell acute lymphoblastic leukemia: results of the prospective multicenter LALA-94 study. Leukemia. 2006;20(12):2155–2161.

    Article  CAS  PubMed  Google Scholar 

  249. Piccaluga PP, Malagola M, Rondoni M, et al. Poor outcome of adult acute lymphoblastic leukemia patients carrying the (1;19)(q23;p13) translocation. Leuk Lymphoma. 2006;47(3):469–472.

    Article  CAS  PubMed  Google Scholar 

  250. Khalidi HS, O’Donnell MR, Slovak ML, Arber DA. Adult precursor-B acute lymphoblastic leukemia with translocations involving chromosome band 19p13 is associated with poor prognosis. Cancer Genet Cytogenet. 1999;109(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  251. Kowalczyk J, Sandberg AA. A possible subgroup of ALL with 9p-. Cancer Genet Cytogenet. 1983;9(4):383–385.

    Article  CAS  PubMed  Google Scholar 

  252. Translocations involving 9p and/or 12p in acute lymphoblastic leukemia. United Kingdom Cancer Cytogenetics Group (UKCCG). Genes Chromosomes Cancer. 1992;5(3):255–259.

    Google Scholar 

  253. Takeuchi S, Koike M, Seriu T, et al. Homozygous deletions at 9p21 in childhood acute lymphoblastic leukemia detected by microsatellite analysis. Leukemia. 1997;11(10):1636–1640.

    Article  CAS  PubMed  Google Scholar 

  254. Bargetzi MJ, Muhlematter D, Tichelli A, Jotterand M, Wernli M. Dicentric translocation (9;12) presenting as refractory Philadelphia chromosome-positive acute B-cell lymphoblastic leukemia. Cancer Genet Cytogenet. 1999;113(1):90–92.

    Article  CAS  PubMed  Google Scholar 

  255. Behrendt H, Charrin C, Gibbons B, et al. Dicentric (9;12) in acute lymphocytic leukemia and other hematological malignancies: report from a dic(9;12) study group. Leukemia. 1995;9(1):102–106.

    CAS  PubMed  Google Scholar 

  256. Huret JL, Heerema NA, Brizard A, et al. Two additional cases of t dic(9:12) in acute lymphocytic leukemia (ALL): prognosis in ALL with dic(9:12). Leukemia. 1990;4(6):423–425.

    CAS  PubMed  Google Scholar 

  257. Stark B, Jeison M, Luria D, et al. Dicentric (9;12) in pre-B acute lymphoblastic leukemia (ALL) in an infant. Leukemia. 1996;10(1):183–184.

    CAS  PubMed  Google Scholar 

  258. Mahmoud H, Carroll AJ, Behm F, et al. The non-random dic(9;12) translocation in acute lymphoblastic leukemia is associated with B-progenitor phenotype and an excellent prognosis. Leukemia. 1992;6(7):703–707.

    CAS  PubMed  Google Scholar 

  259. Forestier E, Gauffin F, Andersen MK, et al. Clinical and cytogenetic features of pediatric dic(9;20)(p13.2;q11.2)-positive B-cell precursor acute lymphoblastic leukemias: a Nordic series of 24 cases and review of the literature. Genes Chromosomes Cancer. 2008;47(2):149–158.

    Article  CAS  PubMed  Google Scholar 

  260. Heerema NA, Maben KD, Bernstein J, Breitfeld PP, Neiman RS, Vance GH. Dicentric (9;20)(p11;q11) identified by fluorescence in situ hybridization in four pediatric acute lymphoblastic leukemia patients. Cancer Genet Cytogenet. 1996;92(2):111–115.

    Article  CAS  PubMed  Google Scholar 

  261. Rieder H, Schnittger S, Bodenstein H, et al. dic(9;20): a new recurrent chromosome abnormality in adult acute lymphoblastic leukemia. Genes Chromosomes Cancer. 1995;13(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  262. Slater R, Smit E, Kroes W, et al. A non-random chromosome abnormality found in precursor-B lineage acute lymphoblastic leukaemia: dic(9;20)(p1?3;q11). Leukemia. 1995;9(10):1613–1619.

    CAS  PubMed  Google Scholar 

  263. Song X, Gong S, Yang J, Wang J. Clinical and molecular cytogenetic characteristics of dic(9;20) in adult acute lymphoblastic leukemia: a case report of three patients. Ann Hematol. 2007;86(5):347–351.

    Article  PubMed  Google Scholar 

  264. Diaz MO, Ziemin S, Le Beau MM, et al. Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. Proc Natl Acad Sci USA. 1988;85(14):5259–5263.

    Article  CAS  PubMed  Google Scholar 

  265. Diaz MO, Rubin CM, Harden A, et al. Deletions of interferon genes in acute lymphoblastic leukemia. N Engl J Med. 1990;322(2):77–82.

    Article  CAS  PubMed  Google Scholar 

  266. Middleton PG, Prince RA, Williamson IK, et al. Alpha interferon gene deletions in adults, children and infants with acute lymphoblastic leukemia. Leukemia. 1991;5(8):680–682.

    CAS  PubMed  Google Scholar 

  267. Dreyling MH, Bohlander SK, Le Beau MM, Olopade OI. Refined mapping of genomic rearrangements involving the short arm of chromosome 9 in acute lymphoblastic leukemias and other hematologic malignancies. Blood. 1995;86(5):1931–1938.

    CAS  PubMed  Google Scholar 

  268. Okuda T, Shurtleff SA, Valentine MB, et al. Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood. 1995;85(9):2321–2330.

    CAS  PubMed  Google Scholar 

  269. Okuda T, Hirai H, Valentine VA, et al. Molecular cloning, expression pattern, and chromosomal localization of human CDKN2D/INK4d, an inhibitor of cyclin D-dependent kinases. Genomics. 1995;29(3):623–630.

    Article  CAS  PubMed  Google Scholar 

  270. Quesnel B, Preudhomme C, Philippe N, et al. p16 gene homozygous deletions in acute lymphoblastic leukemia. Blood. 1995;85(3):657–663.

    CAS  PubMed  Google Scholar 

  271. Rasool O, Heyman M, Brandter LB, et al. p15ink4B and p16ink4 gene inactivation in acute lymphocytic leukemia. Blood. 1995;85(12):3431–3436.

    CAS  PubMed  Google Scholar 

  272. Schroder M, Mathieu U, Dreyling MH, et al. CDKN2 gene deletion is not found in chronic lymphoid leukaemias of B- and T-cell origin but is frequent in acute lymphoblastic leukaemia. Br J Haematol. 1995;91(4):865–870.

    Article  CAS  PubMed  Google Scholar 

  273. Strehl S, Konig M, Dworzak MN, Kalwak K, Haas OA. PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia. 2003;17(6):1121–1123.

    Article  CAS  PubMed  Google Scholar 

  274. Cazzaniga G, Daniotti M, Tosi S, et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res. 2001;61(12):4666–4670.

    CAS  PubMed  Google Scholar 

  275. Busslinger M, Klix N, Pfeffer P, Graninger PG, Kozmik Z. Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc Natl Acad Sci USA. 1996;93(12):6129–6134.

    Article  CAS  PubMed  Google Scholar 

  276. Stapleton P, Weith A, Urbanek P, Kozmik Z, Busslinger M. Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nat Genet. 1993;3(4):292–298.

    Article  CAS  PubMed  Google Scholar 

  277. Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004;22:55–79.

    Article  CAS  PubMed  Google Scholar 

  278. Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401(6753):556–562.

    Article  CAS  PubMed  Google Scholar 

  279. Stuart ET, Gruss P. PAX: developmental control genes in cell growth and differentiation. Cell Growth Differ. 1996;7(3):405–412.

    CAS  PubMed  Google Scholar 

  280. Gastier-Foster JM, Carroll AJ, Ell D, et al. Two distinct subsets of dic(9;12)(p12;p11.2) among children with B-cell precursor acute lymphoblastic leukemia (ALL): PAX5-ETV6 and ETV6-RUNX1 rearrangements: a report from the Children’s Oncology Group. ASH Annual Meeting Abstracts. 2007;110(11):1439.

    Google Scholar 

  281. Calero Moreno TM, Gustafsson G, Garwicz S, et al. Deletion of the Ink4-locus (the p16ink4a, p14ARF and p15ink4b genes) predicts relapse in children with ALL treated according to the Nordic protocols NOPHO-86 and NOPHO-92. Leukemia. 2002;16(10):2037–2045.

    Article  CAS  PubMed  Google Scholar 

  282. Heyman M, Rasool O, Borgonovo BL, et al. Prognostic importance of p15INK4B and p16INK4 gene inactivation in childhood acute lymphocytic leukemia. J Clin Oncol. 1996;14(5):1512–1520.

    CAS  PubMed  Google Scholar 

  283. Heyman M, Grander D, Brondum-Nielsen K, Liu Y, Soderhall S, Einhorn S. Deletions of the short arm of chromosome 9, including the interferon-alpha/-beta genes, in acute lymphocytic leukemia. Studies on loss of heterozygosity, parental origin of deleted genes and prognosis. Int J Cancer. 1993;54(5):748–753.

    Article  CAS  PubMed  Google Scholar 

  284. Robinson HM, Broadfield ZJ, Cheung KL, et al. Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia. 2003;17(11):2249–2250.

    Article  CAS  PubMed  Google Scholar 

  285. Niini T, Kanerva J, Vettenranta K, Saarinen-Pihkala UM, Knuutila S. AML1 gene amplification: a novel finding in childhood acute lymphoblastic leukemia. Haematologica. 2000;85(4):362–366.

    CAS  PubMed  Google Scholar 

  286. Perez-Vera P, Montero-Ruiz O, Frias S, et al. Multiple copies of RUNX1: description of 14 new patients, follow-up, and a review of the literature. Cancer Genet Cytogenet. 2008;180(2):129–134.

    Article  CAS  PubMed  Google Scholar 

  287. Robinson HM, Harrison CJ, Moorman AV, Chudoba I, Strefford JC. Intrachromosomal amplification of chromosome 21 (iAMP21) may arise from a breakage-fusion-bridge cycle. Genes Chromosomes Cancer. 2007;46(4):318–326.

    Article  CAS  PubMed  Google Scholar 

  288. Attarbaschi A, Mann G, Panzer-Grumayer R, et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin-Frankfurt-Munster (ALL-BFM) trials. J Clin Oncol. 2008;26(18):3046–3050.

    Article  CAS  PubMed  Google Scholar 

  289. Moorman AV, Richards SM, Robinson HM, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109(6):2327–2330.

    Article  CAS  PubMed  Google Scholar 

  290. Moppett J, Burke GA, Steward CG, Oakhill A, Goulden NJ. The clinical relevance of detection of minimal residual disease in childhood acute lymphoblastic leukaemia. J Clin Pathol. 2003;56(4):249–253.

    Article  CAS  PubMed  Google Scholar 

  291. Coustan-Smith E, Behm FG, Sanchez J, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351(9102):550–554.

    Article  CAS  PubMed  Google Scholar 

  292. Coustan-Smith E, Sancho J, Hancock ML, et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood. 2000;96(8):2691–2696.

    CAS  PubMed  Google Scholar 

  293. Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002;100(1):52–58.

    Article  CAS  PubMed  Google Scholar 

  294. Dworzak MN, Froschl G, Printz D, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99(6):1952–1958.

    Article  CAS  PubMed  Google Scholar 

  295. Cave H, van der Werff ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med. 1998;339(9):591–598.

    Article  CAS  PubMed  Google Scholar 

  296. Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood. 2000;95(3):790–794.

    CAS  PubMed  Google Scholar 

  297. van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352(9142):1731–1738.

    Article  PubMed  Google Scholar 

  298. Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood. 2008;111(12):5477–5485.

    Article  CAS  PubMed  Google Scholar 

  299. Cimino G, Elia L, Rivolta A, et al. Clinical relevance of residual disease monitoring by polymerase chain reaction in patients with ALL-1/AF-4 positive-acute lymphoblastic leukaemia. Br J Haematol. 1996;92(3):659–664.

    Article  CAS  PubMed  Google Scholar 

  300. Janssen JW, Ludwig WD, Borkhardt A, et al. Pre-pre-B acute lymphoblastic leukemia: high frequency of alternatively spliced ALL1-AF4 transcripts and absence of minimal residual disease during complete remission. Blood. 1994;84(11):3835–3842.

    CAS  PubMed  Google Scholar 

  301. Mitterbauer G, Zimmer C, Fonatsch C, et al. Monitoring of minimal residual leukemia in patients with MLL-AF9 positive acute myeloid leukemia by RT-PCR. Leukemia. 1999;13(10):1519–1524.

    Article  CAS  PubMed  Google Scholar 

  302. Reichel M, Gillert E, Breitenlohner I, et al. Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research. Cancer Res. 1999;59(14):3357–3362.

    CAS  PubMed  Google Scholar 

  303. Gehly GB, Bryant EM, Lee AM, Kidd PG, Thomas ED. Chimeric BCR-abl messenger RNA as a marker for minimal residual disease in patients transplanted for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1991;78(2):458–465.

    CAS  PubMed  Google Scholar 

  304. Mitterbauer G, Nemeth P, Wacha S, et al. Quantification of minimal residual disease in patients with BCR-ABL-positive acute lymphoblastic leukaemia using quantitative competitive polymerase chain reaction. Br J Haematol. 1999;106(3):634–643.

    Article  CAS  PubMed  Google Scholar 

  305. Miyamura K, Tanimoto M, Morishima Y, et al. Detection of Philadelphia chromosome-positive acute lymphoblastic leukemia by polymerase chain reaction: possible eradication of minimal residual disease by marrow transplantation. Blood. 1992;79(5):1366–1370.

    CAS  PubMed  Google Scholar 

  306. Radich J, Gehly G, Lee A, et al. Detection of bcr-abl transcripts in Philadelphia chromosome-positive acute lymphoblastic leukemia after marrow transplantation. Blood. 1997;89(7):2602–2609.

    CAS  PubMed  Google Scholar 

  307. Cayuela JM, Baruchel A, Orange C, et al. TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood. 1996;88(1):302–308.

    CAS  PubMed  Google Scholar 

  308. de Haas V, Oosten L, Dee R, et al. Minimal residual disease studies are beneficial in the follow-up of TEL/AML1 patients with B-precursor acute lymphoblastic leukaemia. Br J Haematol. 2000;111(4):1080–1086.

    Article  PubMed  Google Scholar 

  309. Fasching K, Konig M, Hettinger K, et al. MRD levels during the first months of treatment indicate relapses in children with t(12;21)-positive ALL. Leukemia. 2000;14(9):1707–1708.

    Article  CAS  PubMed  Google Scholar 

  310. Pallisgaard N, Clausen N, Schroder H, Hokland P. Rapid and sensitive minimal residual disease detection in acute leukemia by quantitative real-time RT-PCR exemplified by t(12;21) TEL-AML1 fusion transcript. Genes Chromosomes Cancer. 1999;26(4):355–365.

    Article  CAS  PubMed  Google Scholar 

  311. Park HJ, Lee KE, Um JM, et al. Molecular detection of TEL-AML1 transcripts as a diagnostic tool and for monitoring of minimal residual disease in B-lineage childhood acute lymphoblastic leukemia. Mol Cells. 2000;10(1):90–95.

    Article  CAS  PubMed  Google Scholar 

  312. Pine SR, Moy FH, Wiemels JL, et al. Real-time quantitative PCR: standardized detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Polymerase chain reaction. J Pediatr Hematol Oncol. 2003;25(2):103–108.

    Article  PubMed  Google Scholar 

  313. Taube T, Eckert C, Korner G, Henze G, Seeger K. Real-time quantification of TEL-AML1 fusion transcripts for MRD detection in relapsed childhood acute lymphoblastic leukaemia. Comparison with antigen receptor-based MRD quantification methods. Leuk Res. 2004;28(7):699–706.

    Article  CAS  PubMed  Google Scholar 

  314. Devaraj PE, Foroni L, Janossy G, Hoffbrand AV, Secker-Walker LM. Expression of the E2A-PBX1 fusion transcripts in t(1;19)(q23;p13) and der(19)t(1;19) at diagnosis and in remission of acute lymphoblastic leukemia with different B lineage immunophenotypes. Leukemia. 1995;9(5):821–825.

    CAS  PubMed  Google Scholar 

  315. Foa R, Vitale A, Mancini M, et al. E2A-PBX1 fusion in adult acute lymphoblastic leukaemia: biological and clinical features. Br J Haematol. 2003;120(3):484–487.

    Article  CAS  PubMed  Google Scholar 

  316. Hunger SP, Fall MZ, Camitta BM, et al. E2A-PBX1 chimeric transcript status at end of consolidation is not predictive of treatment outcome in childhood acute lymphoblastic leukemias with a t(1;19)(q23;p13): a Pediatric Oncology Group study. Blood. 1998;91(3):1021–1028.

    CAS  PubMed  Google Scholar 

  317. Izraeli S, Henn T, Strobl H, et al. Expression of identical E2A/PBX1 fusion transcripts occurs in both pre-B and early pre-B immunological subtypes of childhood acute lymphoblastic leukemia. Leukemia. 1993;7(12):2054–2056.

    CAS  PubMed  Google Scholar 

  318. Lanza C, Gottardi E, Gaidano G, et al. Persistence of E2A/PBX1 transcripts in t(1;19) childhood acute lymphoblastic leukemia: correlation with chemotherapy intensity and clinical outcome. Leuk Res. 1996;20(5):441–443.

    Article  CAS  PubMed  Google Scholar 

  319. Privitera E, Rivolta A, Ronchetti D, Mosna G, Giudici G, Biondi A. Reverse transcriptase/polymerase chain reaction follow-up and minimal residual disease detection in t(1;19)-positive acute lymphoblastic leukaemia. Br J Haematol. 1996;92(3):653–658.

    Article  CAS  PubMed  Google Scholar 

  320. van Dongen JJ, Macintyre EA, Gabert JA, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901–1928.

    Article  PubMed  Google Scholar 

  321. Cazzaniga G, Lanciotti M, Rossi V, et al. Prospective molecular monitoring of BCR/ABL transcript in children with Ph+ acute lymphoblastic leukaemia unravels differences in treatment response. Br J Haematol. 2002;119(2):445–453.

    Article  CAS  PubMed  Google Scholar 

  322. Dombret H, Gabert J, Boiron JM, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia – results of the prospective multicenter LALA-94 trial. Blood. 2002;100(7):2357–2366.

    Article  CAS  PubMed  Google Scholar 

  323. Pane F, Frigeri F, Sindona M, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood. 1996;88(7):2410–2414.

    CAS  PubMed  Google Scholar 

  324. Scheuring UJ, Pfeifer H, Wassmann B, et al. Serial minimal residual disease (MRD) analysis as a predictor of response duration in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) during imatinib treatment. Leukemia. 2003;17(9):1700–1706.

    Article  CAS  PubMed  Google Scholar 

  325. Stirewalt DL, Guthrie KA, Beppu L, et al. Predictors of relapse and overall survival in Philadelphia chromosome-positive acute lymphoblastic leukemia after transplantation. Biol Blood Marrow Transplant. 2003;9(3):206–212.

    Article  PubMed  Google Scholar 

  326. Endo C, Oda M, Nishiuchi R, Seino Y. Persistence of TEL-AML1 transcript in acute lymphoblastic leukemia in long-term remission. Pediatr Int. 2003;45(3):275–280.

    Article  CAS  PubMed  Google Scholar 

  327. Madzo J, Zuna J, Muzikova K, et al. Slower molecular response to treatment predicts poor outcome in patients with TEL/AML1 positive acute lymphoblastic leukemia: prospective real-time quantitative reverse transcriptase-polymerase chain reaction study. Cancer. 2003;97(1):105–113.

    Article  CAS  PubMed  Google Scholar 

  328. Metzler M, Mann G, Monschein U, et al. Minimal residual disease analysis in children with t(12;21)-positive acute lymphoblastic leukemia: comparison of Ig/TCR rearrangements and the genomic fusion gene. Haematologica. 2006;91(5):683–686.

    PubMed  Google Scholar 

  329. Lin P, Jones D, Dorfman DM, Medeiros LJ. Precursor B-cell lymphoblastic lymphoma: a predominantly extranodal tumor with low propensity for leukemic involvement. Am J Surg Pathol. 2000;24(11):1480–1490.

    Article  CAS  PubMed  Google Scholar 

  330. Lones MA, Heerema NA, Le Beau MM, et al. Chromosome abnormalities in advanced stage lymphoblastic lymphoma of children and adolescents: a report from CCG-E08. Cancer Genet Cytogenet. 2007;172(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  331. Maitra A, McKenna RW, Weinberg AG, Schneider NR, Kroft SH. Precursor B-cell lymphoblastic lymphoma. A study of nine cases lacking blood and bone marrow involvement and review of the literature. Am J Clin Pathol. 2001;115(6):868–875.

    Article  CAS  PubMed  Google Scholar 

  332. Head DR, Behm FG. Acute lymphoblastic leukemia and the lymphoblastic lymphomas of childhood. Semin Diagn Pathol. 1995;12(4):325–334.

    CAS  PubMed  Google Scholar 

  333. Belgaumi AF, Al-Kofide A, Sabbah R, Shalaby L. Precursor B-cell lymphoblastic lymphoma (PBLL) in children: pattern of presentation and outcome. J Egypt Natl Canc Inst. 2005;17(1):15–19.

    PubMed  Google Scholar 

  334. Shikano T, Ishikawa Y, Naito H, et al. Cytogenetic characteristics of childhood non-Hodgkin lymphoma. Cancer. 1992;70(3):714–719.

    Article  CAS  PubMed  Google Scholar 

  335. Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1(2):133–143.

    Article  CAS  PubMed  Google Scholar 

  336. Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–47.

    Article  CAS  PubMed  Google Scholar 

  337. Gandemer V, Rio AG, de Tayrac M, et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics. 2007;8:385.

    Article  PubMed  Google Scholar 

  338. Bhojwani D, Kang H, Moskowitz NP, et al. Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood. 2006;108(2):711–717.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the invaluable technical assistance of Dr. Martha Sensel and Kathryn O’Dell in the preparation of this chapter. She would also like to thank Dr. Nyla Heerema for her careful review and suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gastier-Foster, J.M. (2010). Precursor B-Cell Acute Lymphoblastic Leukemia. In: Dunphy, C. (eds) Molecular Pathology of Hematolymphoid Diseases. Molecular Pathology Library, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5698-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5698-9_24

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5697-2

  • Online ISBN: 978-1-4419-5698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics