Skip to main content

The Molecular Pathology of Burkitt Lymphoma

  • Chapter
  • First Online:
Molecular Pathology of Hematolymphoid Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 4))

  • 1294 Accesses

Abstract

In 1958, Dr. Denis P. Burkitt reported on a series of 32 children presenting with large malignant tumors of the jaw at Mulago Hospital in Uganda and six other district hospitals. The syndrome was notable for starting in the mandible and often spreading to other jaw quadrants, as well as to the adrenals, kidneys, and liver. No involvement of spleen or lymph nodes was detected in these initial 38 patients. Of note, in that initial report, the histopathology was described as “strongly resembling lymphocytes… [and] in some cases the tumor [resembled] a lymphosarcoma.” Definitive classification of this as a lymphoma would await O’Conor and Davies’ description of these and other cases in 1960.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burkitt D. A sarcoma involving the jaws in African children. Br J Surg. 1958;46(197):218–223.

    Article  CAS  PubMed  Google Scholar 

  2. O’Conor GT, Davies JN. Malignant tumors in African children. With special reference to malignant lymphoma. J Pediatr. 1960;56:526–535.

    Article  PubMed  Google Scholar 

  3. Burkitt D. A “tumour safari” in East and Central Africa. Br J Cancer. 1962;16:379–386.

    CAS  PubMed  Google Scholar 

  4. Kafuko GW, Burkitt DP. Burkitt’s lymphoma and malaria. Int J Cancer. 1970;6(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  5. Pike MC, Morrow RH, Kisuule A, Mafigiri J. Burkitt’s lymphoma and sickle cell trait. Br J Prev Soc Med. 1970;24(1):39–41.

    CAS  PubMed  Google Scholar 

  6. Jerusalem C. Relationship between malaria infection (Plasmodium berghei) and malignant lymphoma in mice. Z Tropenmed Parasitol. 1968;19(1):94–108.

    CAS  PubMed  Google Scholar 

  7. Magrath IT, Sariban E. Clinical features of Burkitt’s lymphoma in the USA. IARC Sci Publ. 1985;60:119–127.

    PubMed  Google Scholar 

  8. Knowles DM. Molecular pathology of acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma. Semin Diagn Pathol. 1997;14(1):67–82.

    CAS  PubMed  Google Scholar 

  9. Blum KA, Lozanski G, Byrd JC. Adult Burkitt leukemia and lymphoma. Blood. 2004;104(10):3009–3020.

    Article  CAS  PubMed  Google Scholar 

  10. Gong JZ, Stenzel TT, Bennett ER, et al. Burkitt lymphoma arising in organ transplant recipients: a clinicopathologic study of five cases. Am J Surg Pathol. 2003;27(6):818–827.

    Article  PubMed  Google Scholar 

  11. Xicoy B, Ribera JM, Esteve J, et al. Post-transplant Burkitt’s leukemia or lymphoma. Study of five cases treated with specific intensive therapy (PETHEMA ALL-3/97 trial). Leuk Lymphoma. 2003;44(9):1541–1543.

    Article  PubMed  Google Scholar 

  12. Ferry JA. Burkitt’s lymphoma: clinicopathologic features and differential diagnosis. Oncologist. 2006;11(4):375–383.

    Article  PubMed  Google Scholar 

  13. Cortes J, Thomas D, Rios A, et al. Hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone and highly active antiretroviral therapy for patients with acquired immunodeficiency syndrome-related Burkitt lymphoma/leukemia. Cancer. 2002;94(5):1492–1499.

    Article  CAS  PubMed  Google Scholar 

  14. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet. 1964;1(7335):702–703.

    Article  CAS  PubMed  Google Scholar 

  15. Araujo I, Foss HD, Hummel M, et al. Frequent expansion of Epstein–Barr virus (EBV) infected cells in germinal centres of tonsils from an area with a high incidence of EBV-associated lymphoma. J Pathol. 1999;187(3):326–330.

    Article  CAS  PubMed  Google Scholar 

  16. Klumb CE, Hassan R, De Oliveira DE, et al. Geographic variation in Epstein–Barr virus-associated Burkitt’s lymphoma in children from Brazil. Int J Cancer. 2004;108(1):66–70.

    Article  PubMed  Google Scholar 

  17. Anwar N, Kingma DW, Bloch AR, et al. The investigation of Epstein–Barr viral sequences in 41 cases of Burkitt’s lymphoma from Egypt: epidemiologic correlations. Cancer. 1995;76(7):1245–1252.

    Article  CAS  PubMed  Google Scholar 

  18. Powles T, Matthews G, Bower M. AIDS related systemic non-Hodgkin’s lymphoma. Sex Transm Infect. 2000;76(5):335–341.

    Article  CAS  PubMed  Google Scholar 

  19. Thorley-Lawson DA. Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol. 2001;1(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  20. Rickinson A, Kieff E. Epstein–Barr virus. In: Knipe DM, Howley PM, eds. Fields Virology. 4th ed. Philadelphia PA: Lippincott Williams & Williams; 2001:2576–2615.

    Google Scholar 

  21. Tao Q, Robertson KD, Manns A, Hildesheim A, Ambinder RF. Epstein–Barr virus (EBV) in endemic Burkitt’s lymphoma: molecular analysis of primary tumor tissue. Blood. 1998;91(4):1373–1381.

    CAS  PubMed  Google Scholar 

  22. Kelly G, Bell A, Rickinson A. Epstein–Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat Med. 2002;8(10):1098–1104.

    Article  CAS  PubMed  Google Scholar 

  23. Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nat Rev Cancer. 2004;4(10):757–768.

    Article  CAS  PubMed  Google Scholar 

  24. Yates JL, Warren N, Sugden B. Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature. 1985;313(6005):812–815.

    Article  CAS  PubMed  Google Scholar 

  25. Frisan T, Zhang QJ, Levitskaya J, Coram M, Kurilla MG, Masucci MG. Defective presentation of MHC class I-restricted cytotoxic T-cell epitopes in Burkitt’s lymphoma cells. Int J Cancer. 1996;68(2):251–258.

    Article  CAS  PubMed  Google Scholar 

  26. Kennedy G, Komano J, Sugden B. Epstein–Barr virus provides a survival factor to Burkitt’s lymphomas. Proc Natl Acad Sci U S A. 2003;100(24):14269–14274.

    Article  CAS  PubMed  Google Scholar 

  27. Kiss C, Nishikawa J, Takada K, Trivedi P, Klein G, Szekely L. T cell leukemia I oncogene expression depends on the presence of Epstein–Barr virus in the virus-carrying Burkitt lymphoma lines. Proc Natl Acad Sci U S A. 2003;100(8):4813–4818.

    Article  CAS  PubMed  Google Scholar 

  28. Komano J, Maruo S, Kurozumi K, Oda T, Takada K. Oncogenic role of Epstein–Barr virus-encoded RNAs in Burkitt’s lymphoma cell line Akata. J Virol. 1999;73(12):9827–9831.

    CAS  PubMed  Google Scholar 

  29. Ruf IK, Rhyne PW, Yang C, Cleveland JL, Sample JT. Epstein–Barr virus small RNAs potentiate tumorigenicity of Burkitt lymphoma cells independently of an effect on apoptosis. J Virol. 2000;74(21):10223–10228.

    Article  CAS  PubMed  Google Scholar 

  30. Nanbo A, Yoshiyama H, Takada K. Epstein–Barr virus-encoded poly(A)-RNA confers resistance to apoptosis mediated through Fas by blocking the PKR pathway in human epithelial intestine 407 cells. J Virol. 2005;79(19):12280–12285.

    Article  CAS  PubMed  Google Scholar 

  31. Sharp TV, Schwemmle M, Jeffrey I, et al. Comparative analysis of the regulation of the interferon-inducible protein kinase PKR by Epstein–Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. Nucleic Acids Res. 1993;21(19):4483–4490.

    Article  CAS  PubMed  Google Scholar 

  32. Kitagawa N, Goto M, Kurozumi K, et al. Epstein–Barr virus-encoded poly(A)-RNA supports Burkitt’s lymphoma growth through interleukin-10 induction. Embo J. 2000;19(24):6742–6750.

    Article  CAS  PubMed  Google Scholar 

  33. Polack A, Hortnagel K, Pajic A, et al. c-myc activation renders proliferation of Epstein–Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc Natl Acad Sci U S A. 1996;93(19):10411–10416.

    Article  CAS  PubMed  Google Scholar 

  34. Speck SH. EBV framed in Burkitt lymphoma. Nat Med. 2002;8(10):1086–1087.

    Article  CAS  PubMed  Google Scholar 

  35. Kelly GL, Milner AE, Baldwin GS, Bell AI, Rickinson AB. Three restricted forms of Epstein–Barr virus latency counteracting apoptosis in c-myc-expressing Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 2006;103(40):14935–14940.

    Article  CAS  PubMed  Google Scholar 

  36. Brady G, MacArthur GJ, Farrell PJ. Epstein–Barr virus and Burkitt lymphoma. J Clin Pathol. 2007;60(12):1397–1402.

    CAS  PubMed  Google Scholar 

  37. Donati D, Mok B, Chene A, et al. Increased B cell survival and preferential activation of the memory compartment by a malaria polyclonal B cell activator. J Immunol. 2006;177(5):3035–3044.

    CAS  PubMed  Google Scholar 

  38. Masood R, Zhang Y, Bond MW, et al. Interleukin-10 is an autocrine growth factor for acquired immunodeficiency syndrome-related B-cell lymphoma. Blood. 1995;85(12):3423–3430.

    CAS  PubMed  Google Scholar 

  39. Boshoff C, Weiss R. AIDS-related malignancies. Nat Rev Cancer. 2002;2(5):373–382.

    Article  CAS  PubMed  Google Scholar 

  40. Nakajima K, Martinez-Maza O, Hirano T, et al. Induction of IL-6 (B cell stimulatory factor-2/IFN-beta 2) production by HIV. J Immunol. 1989;142(2):531–536.

    CAS  PubMed  Google Scholar 

  41. Manolov G, Manolova Y. Marker band in one chromosome 14 from Burkitt lymphomas. Nature. 1972;237(5349):33–34.

    Article  CAS  PubMed  Google Scholar 

  42. Zech L, Haglund U, Nilsson K, Klein G. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer. 1976;17(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  43. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 1982;79(24):7824–7827.

    Article  CAS  PubMed  Google Scholar 

  44. Taub R, Kirsch I, Morton C, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982;79(24):7837–7841.

    Article  CAS  PubMed  Google Scholar 

  45. Kovalchuk AL, Qi CF, Torrey TA, et al. Burkitt lymphoma in the mouse. J Exp Med. 2000;192(8):1183–1190.

    Article  CAS  PubMed  Google Scholar 

  46. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci U S A. 2003;100(14):8164–8169.

    Article  CAS  PubMed  Google Scholar 

  47. Bench AJ, Erber WN, Follows GA, Scott MA. Molecular genetic analysis of haematological malignancies II: Mature lymphoid neoplasms. Int J Lab Hematol. 2007;29(4):229-260.

    Article  CAS  PubMed  Google Scholar 

  48. Yustein JT, Dang CV. Biology and treatment of Burkitt’s lymphoma. Curr Opin Hematol. 2007;14(4):375–381.

    Article  PubMed  Google Scholar 

  49. Neri A, Barriga F, Knowles DM, Magrath IT, Dalla-Favera R. Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc Natl Acad Sci U S A. 1988;85(8):2748–2752.

    Article  CAS  PubMed  Google Scholar 

  50. Pelicci PG, Knowles DM 2nd, Magrath I, Dalla-Favera R. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci U S A. 1986;83(9):2984–2988.

    Article  CAS  PubMed  Google Scholar 

  51. Shiramizu B, Barriga F, Neequaye J, et al. Patterns of chromosomal breakpoint locations in Burkitt’s lymphoma: relevance to geography and Epstein–Barr virus association. Blood. 1991;77(7):1516–1526.

    CAS  PubMed  Google Scholar 

  52. Guikema JE, Schuuring E, Kluin PM. Structure and consequences of IGH switch breakpoints in Burkitt lymphoma. J Natl Cancer Inst Monogr. 2008;39:32–36.

    Article  CAS  PubMed  Google Scholar 

  53. Goossens T, Klein U, Kuppers R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A. 1998;95(5):2463–2468.

    Article  CAS  PubMed  Google Scholar 

  54. Isobe K, Tamaru J, Nakamura S, Harigaya K, Mikata A, Ito H. VH gene analysis in sporadic Burkitt’s lymphoma: somatic mutation and intraclonal diversity with special reference to the tumor cells involving germinal center. Leuk Lymphoma. 2002;43(1):159–164.

    Article  CAS  PubMed  Google Scholar 

  55. Chapman CJ, Wright D, Stevenson FK. Insight into Burkitt’s lymphoma from immunoglobulin variable region gene analysis. Leuk Lymphoma. 1998;30(3–4):257–267.

    CAS  PubMed  Google Scholar 

  56. Dang CV, O’Donnell KA, Juopperi T. The great MYC escape in tumorigenesis. Cancer Cell. 2005;8(3):177–178.

    Article  CAS  PubMed  Google Scholar 

  57. Sander S, Bullinger L, Klapproth K, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood. 2008;112:4202–4212.

    Article  CAS  PubMed  Google Scholar 

  58. Leucci E, Cocco M, Onnis A, et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol. 2008;216(14):440–450.

    Article  CAS  PubMed  Google Scholar 

  59. Dave SS, Fu K, Wright GW, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354(23):2431–2442.

    Article  CAS  PubMed  Google Scholar 

  60. Hummel M, Bentink S, Berger H, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419–2430.

    Article  CAS  PubMed  Google Scholar 

  61. Hoang AT, Lutterbach B, Lewis BC, et al. A link between increased transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain. Mol Cell Biol. 1995;15(8):4031–4042.

    CAS  PubMed  Google Scholar 

  62. Henriksson M, Bakardjiev A, Klein G, Luscher B. Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene. 1993;8(12):3199–3209.

    CAS  PubMed  Google Scholar 

  63. Hemann MT, Bric A, Teruya-Feldstein J, et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature. 2005;436(7052):807–811.

    Article  CAS  PubMed  Google Scholar 

  64. Salghetti SE, Kim SY, Tansey WP. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. Embo J. 1999;18(3):717–726.

    Article  CAS  PubMed  Google Scholar 

  65. Rainio EM, Ahlfors H, Carter KL, et al. Pim kinases are upregulated during Epstein–Barr virus infection and enhance EBNA2 activity. Virology. 2005;333(2):201–206.

    Article  CAS  PubMed  Google Scholar 

  66. Ionov Y, Le X, Tunquist BJ, et al. Pim-1 protein kinase is nuclear in Burkitt’s lymphoma: nuclear localization is necessary for its biologic effects. Anticancer Res. 2003;23(1):167–178.

    CAS  PubMed  Google Scholar 

  67. Lindstrom MS, Klangby U, Wiman KG. p14ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53. Oncogene. 2001;20(17):2171–2177.

    Article  CAS  PubMed  Google Scholar 

  68. Gaidano G, Ballerini P, Gong JZ, et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 1991;88(12):5413–5417.

    Article  CAS  PubMed  Google Scholar 

  69. Carbone A, Gloghini A, Gaidano G, et al. AIDS-related Burkitt’s lymphoma. Morphologic and immunophenotypic study of biopsy specimens. Am J Clin Pathol. 1995;103(5):561–567.

    CAS  PubMed  Google Scholar 

  70. Veronese ML, Ohta M, Finan J, Nowell PC, Croce CM. Detection of myc translocations in lymphoma cells by fluorescence in situ hybridization with yeast artificial chromosomes. Blood. 1995;85(8):2132–2138.

    CAS  PubMed  Google Scholar 

  71. Hecht JL, Aster JC. Molecular biology of Burkitt’s lymphoma. J Clin Oncol. 2000;18(21):3707–3721.

    CAS  PubMed  Google Scholar 

  72. zur Stadt U, Hoser G, Reiter A, Welte K, Sykora KW. Application of long PCR to detect t(8;14)(q24;q32) translocations in childhood Burkitt’s lymphoma and B-ALL. Ann Oncol. 1997;8(suppl 1):31–35.

    Article  PubMed  Google Scholar 

  73. Basso K, Frascella E, Zanesco L, Rosolen A. Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt’s lymphomas. Am J Pathol. 1999;155(5):1479–1485.

    CAS  PubMed  Google Scholar 

  74. Akasaka T, Muramatsu M, Ohno H, et al. Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood. 1996;88(3):985–994.

    CAS  PubMed  Google Scholar 

  75. Mussolin L, Basso K, Pillon M, et al. Prospective analysis of minimal bone marrow infiltration in pediatric Burkitt’s lymphomas by long-distance polymerase chain reaction for t(8;14)(q24;q32). Leukemia. 2003;17(3):585–589.

    Article  CAS  PubMed  Google Scholar 

  76. Shiramizu B, Magrath I. Localization of breakpoints by polymerase chain reactions in Burkitt’s lymphoma with 8;14 translocations. Blood. 1990;75(9):1848–1852.

    CAS  PubMed  Google Scholar 

  77. Mossafa H, Damotte D, Jenabian A, et al. Non-Hodgkin’s lymphomas with Burkitt-like cells are associated with c-Myc amplification and poor prognosis. Leuk Lymphoma. 2006;47(9):1885–1893.

    Article  CAS  PubMed  Google Scholar 

  78. Harris NL, Horning SJ. Burkitt’s lymphoma – the message from microarrays. N Engl J Med. 2006;354(23):2495-2498.

    Article  CAS  PubMed  Google Scholar 

  79. Magrath I, Adde M, Shad A, et al. Adults and children with small non-cleaved-cell lymphoma have a similar excellent outcome when treated with the same chemotherapy regimen. J Clin Oncol. 1996;14(3):925–934.

    CAS  PubMed  Google Scholar 

  80. Lacasce A, Howard O, Lib S, et al. Modified magrath regimens for adults with Burkitt and Burkitt-like lymphomas: preserved efficacy with decreased toxicity. Leuk Lymphoma. 2004;45(4):761–767.

    Article  CAS  PubMed  Google Scholar 

  81. Thomas DA, Cortes J, O’Brien S, et al. Hyper-CVAD program in Burkitt’s-type adult acute lymphoblastic leukemia. J Clin Oncol. 1999;17(8):2461–2470.

    CAS  PubMed  Google Scholar 

  82. van Imhoff GW, van der Holt B, MacKenzie MA, et al. Short intensive sequential therapy followed by autologous stem cell transplantation in adult Burkitt, Burkitt-like and lymphoblastic lymphoma. Leukemia. 2005;19(6):945–952.

    Article  PubMed  Google Scholar 

  83. Sweetenham JW, Pearce R, Taghipour G, Blaise D, Gisselbrecht C, Goldstone AH. Adult Burkitt’s and Burkitt-like non-Hodgkin’s lymphoma – outcome for patients treated with high-dose therapy and autologous stem-cell transplantation in first remission or at relapse: results from the European Group for Blood and Marrow Transplantation. J Clin Oncol. 1996;14(9):2465–2472.

    CAS  PubMed  Google Scholar 

  84. Peniket AJ, Ruiz de Elvira MC, Taghipour G, et al. An EBMT registry matched study of allogeneic stem cell transplants for lymphoma: allogeneic transplantation is associated with a lower relapse rate but a higher procedure-related mortality rate than autologous transplantation. Bone Marrow Transplant. 2003;31(8):667–678.

    Article  CAS  PubMed  Google Scholar 

  85. Thomas DA, Faderl S, O’Brien S, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer. 2006;106(7):1569–1580.

    Article  CAS  PubMed  Google Scholar 

  86. Boue F, Gabarre J, Gisselbrecht C, et al. Phase II trial of CHOP plus rituximab in patients with HIV-associated non-Hodgkin’s lymphoma. J Clin Oncol. 2006;24(25):4123–4128.

    Article  CAS  PubMed  Google Scholar 

  87. Fayad L, Thomas D, Romaguera J. Update of the M. D. Anderson Cancer Center experience with hyper-CVAD and rituximab for the treatment of mantle cell and Burkitt-type lymphomas. Clin Lymphoma Myeloma. 2007;8(suppl 2):S57–S62.

    Article  CAS  PubMed  Google Scholar 

  88. Carnahan J, Stein R, Qu Z, et al. Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol. 2007;44(6):1331–1341.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mosse, C., Weck, K. (2010). The Molecular Pathology of Burkitt Lymphoma. In: Dunphy, C. (eds) Molecular Pathology of Hematolymphoid Diseases. Molecular Pathology Library, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5698-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5698-9_23

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5697-2

  • Online ISBN: 978-1-4419-5698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics